Electric Power ›› 2020, Vol. 53 ›› Issue (8): 182-192.DOI: 10.11930/j.issn.1004-9649.202006277
YANG Meng1, ZHANG Lizi1, LV Jianhu2, XUE Bike2, YUAN Hao2
Received:
2020-06-25
Revised:
2020-07-13
Published:
2020-08-05
Supported by:
YANG Meng, ZHANG Lizi, LV Jianhu, XUE Bike, YUAN Hao. Flexibility-Oriented Day-ahead Market Clearing Model for Electrical Energy and Ancillary Services[J]. Electric Power, 2020, 53(8): 182-192.
[1] NOSAIR H, BOUFFARD F. Energy-centric flexibility management in power systems[J]. IEEE Transactions on Power Systems, 2016, 31(6): 5071-5081. [2] 张馨瑜, 陈启鑫, 葛睿, 等. 考虑灵活块交易的电力现货市场出清模型[J]. 电力系统自动化, 2017, 41(24): 35-41 ZHANG Xinyu, CHEN Qixin, GE Rui, et al. Clearing model of electricity spot market considering flexible block orders[J]. Automation of Electric Power Systems, 2017, 41(24): 35-41 [3] CORREA-POSADA C M, MORALES-ESPAÑA G, DUEÑAS P, et al. Dynamic ramping model including intraperiod ramp-rate changes in unit commitment[J]. IEEE Transactions on Sustainable Energy, 2017, 8(1): 43-50. [4] CHEN G, ZENG K, DONG C, et al. Generation scheduling considering natural gas storage and uncertainty[C]//2017 IEEE Manchester Power Tech. IEEE, 2017: 1-5. [5] WU Z, ZENG P, ZHANG X, et al. A solution to the chance-constrained two-stage stochastic program for unit commitment with wind energy integration[J]. IEEE Transactions on Power Systems, 2016, 31(6): 4185-4196. [6] OIKONOMOU K, PARVANIA M. Optimal coordination of water distribution energy flexibility with power systems operation[J]. IEEE Transactions on Smart Grid, 2019, 10(1): 1101-1110. [7] ZHANG J, LI K, WANG M, et al. A bi-level program for the planning of an islanded microgrid including CAES[J]. IEEE Transactions on Industry Applications, 2016, 52(4): 2768-2777. [8] 王晓晖, 张粒子, 程世军. 多元电力系统中抽水蓄能的经济性问题研究[J]. 电力系统保护与控制, 2014(4): 8-15 WANG Xiaohui, ZHANG Lizi, CHENG Shijun. Economic analysis of pumped-storage unit in electricity system with multi-type power sources[J]. Power System Protection and Control, 2014(4): 8-15 [9] BRUNINX K, DVORKIN Y, DELARUE E, et al. Valuing demand response controllability via chance constrained programming[J]. IEEE Transactions on Sustainable Energy, 2018, 9(1): 178-187. [10] CHEN R Z, SUN H B, GUO Q L, et al. Profit-seeking energy-intensive enterprises participating in power system scheduling: model and mechanism[J]. Applied Energy, 2015, 158: 263-274. [11] DVORKIN Y, ORTEGA-VAZUQEZ M A, KIRSCHEN D S. Wind generation as a reserve provider[J]. IET Generation, Transmission & Distribution, 2015, 9(8): 779-787. [12] 赵勇强, Ella CHOU, 刘坚. 促进系统灵活性和可再生能源消纳的电力市场体系[J]. 中国能源, 2019, 41(1): 19-24, 32 ZHAO Yongqiang, Ella CHOU, LIU Jian. An electricity market system that promotes system flexibility and renewable energy consumption[J]. Energy of China, 2019, 41(1): 19-24, 32 [13] 肖云鹏, 王锡凡, 王秀丽, 等. 面向高比例可再生能源的电力市场研究综述[J]. 中国电机工程学报, 2018, 38(3): 663-674 XIAO Yunpeng, WANG Xifan, WANG Xiuli, et al. Review on electricity market towards high proportion of renewable energy[J]. Proceedings of the CSEE, 2018, 38(3): 663-674 [14] MORALES-ESPAÑA G, RAMOS A, GARCÍA-GONZÁLEZ J. An MIP formulation for joint market-clearing of energy and reserves based on ramp scheduling[J]. IEEE Transactions on Power Systems, 2014, 29(1): 476-488. [15] PARVANIA M, SCAGLIONE A. Unit commitment with continuous-time generation and ramping trajectory models[J]. IEEE Transactions on Power Systems, 2016, 31(4): 3169-3178. [16] ZHANG Y, WANG J, DING T, et al. Conditional value at risk-based stochastic unit commitment considering the uncertainty of wind power generation[J]. IET Generation, Transmission & Distribution, 2018, 12(2): 482-489. [17] LÓPEZ SALGADO C J, ANÓ O, OJEDA-ESTEYBAR D M. Energy and reserve co-optimization within the short term hydrothermal scheduling under uncertainty: a proposed model and decomposition strategy[J]. Electric Power Systems Research, 2016, 140: 539-551. [18] 葛晓琳, 张粒子. 考虑调峰约束的风水火随机机组组合问题[J]. 电工技术学报, 2014, 29(10): 222-230 GE Xiaolin, ZHANG Lizi. Wind-hydro-thermal stochastic unit commitment problem considering the peak regulation constraints[J]. Transactions of China Electrotechnical Society, 2014, 29(10): 222-230 [19] POURAHMADI F, HOSSEINI S H, FOTUHI-FIRUZABAD M. Economically optimal uncertainty set characterization for power system operational flexibility[J]. IEEE Transactions on Industrial Informatics, 2019, 15(10): 5456-5465. [20] COBOS N G, ARROYO J M, ALGUACIL N, et al. Robust energy and reserve scheduling under wind uncertainty considering fast-acting generators[J]. IEEE Transactions on Sustainable Energy, 2019, 10(4): 2142-2151. [21] LANNOYE E, FLYNN D O. Evaluation of power system flexibility[J]. IEEE Transactions on Power Systems, 2012, 27(2): 922-931. [22] MA J, SILVA V, BELHOMME R, et al. Evaluating and planning flexibility in sustainable power systems[J]. IEEE Transactions on Sustainable Energy, 2013, 4(1): 200-209. [23] 鲁宗相, 李海波, 乔颖. 高比例可再生能源并网的电力系统灵活性评价与平衡机理[J]. 中国电机工程学报, 2017, 37(1): 9-19 LU Zongxiang, LI Haibo, QIAO Ying. Flexibility evaluation and supply/demand balance principle of power system with high-penetration renewable electricity[J]. Proceedings of the CSEE, 2017, 37(1): 9-19 [24] PEYDAYESH M, MATEVOSYAN J, BALDICK R. Study ERCOT fast-responding regulation service using frequency modeling tool[C]//2018 IEEE Texas Power and Energy Conference (TPEC), 2018: 1-6. [25] 2019 State of the market report for PJM[R]. Monitoring Analytics LLC, 2020: 1-90. [26] 何永秀, 陈倩, 费云志, 等. 国外典型辅助服务市场产品研究及对中国的启示[J]. 电网技术, 2018, 42(9): 2915-2922 HE Yongxiu, CHEN Qian, FEI Yunzhi, et al. Typical foreign ancillary service market products and enlightenment to China[J]. Power System Technology, 2018, 42(9): 2915-2922 [27] ZHOU Z, LENIN T, CONZELMANN G. Survey of U.S. ancillary services markets[R]. Argnne National Laboratory, 2016: 1-59. [28] OSTROWSKI J, ANJOS M F, VANNELLI A. Tight mixed integer linear programming formulations for the unit commitment problem[J]. IEEE Transactions on Power Systems, 2012, 27(1): 39-46. [29] CHEN Y. Two-part regulating reserve compensation formulation under energy and ancillary service co-optimization[C]//2013 IEEE Power & Energy Society General Meeting, 2013: 1-5. [30] CHEN Y, GRIBIK P, GARDNER J. Incorporating post zonal reserve deployment transmission constraints into energy and ancillary service co-optimization[J]. IEEE Transactions on Power Systems, 2014, 29(2): 537-549. [31] ENTSO-E. Frequency quality investigation, excerpt of the final report[EB/OL]. (2008-8-30) [2020-6-21]. www.entsoe.eu/fileadmin/user_upload/_library/publications/ce/otherreports/090330_UCTE_FrequencyInvestigationReport_Abstract.pdf. [32] WEISSBACH T, WELFONDER E. High frequency deviations within the European power system: origins and proposals for improvement[C]//2009 IEEE/PES Power Systems Conference and Exposition and Exposition, 2009: 1-6. |
[1] | WANG Xuanyuan, ZHANG Wei, LI Changyu, XIE Huan, GUO Qinglai, WANG Bin, ZHANG Yuqian. A Method for Calculating the Feasible Operation Region of Active and Reactive Power in Active Distribution Networks Considering Stochasticity [J]. Electric Power, 2025, 58(4): 182-192. |
[2] | Yumin ZHANG, Yanbin Yin, Xingquan JI, Pingfeng YE, Donglei SUN, Aiquan SONG. Optimal Dispatch of Integrated Electric-Heat Energy System Considering Supply Flexibility of Heat Networks Under Different Operation States [J]. Electric Power, 2025, 58(2): 88-102. |
[3] | Donglei SUN, Xian WANG, Yi SUN, Xiangfei MENG, Yongchen ZHANG, Yumin ZHANG. Polyhedral Uncertainty Set Based Power System Flexibility Quantitative Assessment [J]. Electric Power, 2024, 57(9): 146-155. |
[4] | Zhiqiang LIU, Jianfeng LI, Li PAN, Zhixuan WANG. Analysis and Prospect of Transformation and Upgrading Effects of Coal-fired Power Units in China [J]. Electric Power, 2024, 57(7): 1-11. |
[5] | Fengliang XU, Keqian WANG, Wenhao WANG, Peng WANG, Huanchang WANG, Shuai Zhang, Fengzhan ZHAO. Collaborative Expansion Planning of Source-Grid-Storage in Medium Voltage Distribution System Considering Operational Flexibility [J]. Electric Power, 2024, 57(7): 98-108. |
[6] | Funian HU, Pengcheng ZHANG, Xiaobo ZHOU, Jun CHEN. Coordinated Optimal Scheduling of Source and Load in Integrated Energy System Considering Flexible Resources [J]. Electric Power, 2024, 57(5): 2-13. |
[7] | Huihong YUAN, Shile WENG, Liangjin CHEN, Yitao ZHU, Lijun ZHANG, Bei QI. Capacity Configuration for "PEDF" System Driven by Safe and Stable Operation [J]. Electric Power, 2024, 57(11): 102-107. |
[8] | Jing XU, Tiejun ZHAO, Xiaogang GAO, Ju YE, Lingling SUN. Risk Analysis of Insufficient Flexibility from Regulation Resources in High Proportion Renewable Energy Power Systems [J]. Electric Power, 2024, 57(11): 129-138. |
[9] | Haishen LIANG, Kangli WANG, Hongyu SONG, Jinna HAO, Jun XIAO. Influence Rules and Mechanism Analysis of Distribution Network Flexibility Degree on Distributed Generator Accommodation [J]. Electric Power, 2024, 57(10): 36-45. |
[10] | Zhiwen LIU, Yan LI, Chong SHAO, Xinming FAN, Qinghui ZENG. Distribution Network Flexibility Evaluation Method Considering Collaborative Interaction of Flexible Resources [J]. Electric Power, 2024, 57(10): 158-165. |
[11] | Rui ZHU, Yiding OU, Xiaotian LI, Xingyu LEI, Yuqing ZHOU, Poyang ZHANG, Rui OU. Evaluation of Virtual Power Plant Flexibility Resources Based on External Characteristic Equivalence [J]. Electric Power, 2024, 57(1): 30-39. |
[12] | XU Yanping, SHI Haobo, QIN Xiaohui, ZHAO Mingxin, BAI Jie, Ding Baodi. Analysis of Investment Economy of Electric Boilers with Thermal Storage in Source-Load Application Scenarios [J]. Electric Power, 2023, 56(2): 123-132. |
[13] | YE Chang, YI Huamao, ZHU Jiongda, ZHAO Jingjing, WU Lian. A Cluster Partition Method for Distributed Generation Considering Flexibility Supply-Demand Balance and Response Speed [J]. Electric Power, 2023, 56(2): 150-156. |
[14] | LI Xudong, YANG Ye, LI Fanqi, SHI Quanyou, TAN Zhongfu. Business Models of Electric Vehicle Aggregators Considering Electricity Price Uncertainty and Capacity Decay [J]. Electric Power, 2023, 56(1): 38-48. |
[15] | ZHOU Hailang, LIU Yipan, CHEN Yuguo, WANG Zishi, QU Shengpeng, HE Kai, BAO Shiyuan. Demand Side Feasible Region Aggregation Considering Flexibility Revenue [J]. Electric Power, 2022, 55(9): 56-63,155. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||