Electric Power ›› 2018, Vol. 51 ›› Issue (1): 51-58.DOI: 10.11930/j.issn.1004-9649.201711236
Previous Articles Next Articles
LU Zongxiang1, TANG Haiyan2, QIAO Ying1, TIAN Xinshou2, CHI Yongning2
Received:
2017-11-27
Online:
2018-01-05
Published:
2018-02-28
Supported by:
CLC Number:
LU Zongxiang, TANG Haiyan, QIAO Ying, TIAN Xinshou, CHI Yongning. The Impact of Power Electronics Interfaces on Power System Frequency Control: A Review[J]. Electric Power, 2018, 51(1): 51-58.
[1] 张文亮, 汤广福, 查鲲鹏, 等. 先进电力电子技术在智能电网中的应用[J]. 中国电机工程学报, 2010, 30(4): 1-7. Zhang Wenliang, Tang Guangfu, Zha Kunpeng, et al. Ap-plication of advanced power electronics in smart grid [J]. Proceedings of the CSEE, 2010, 30(4): 1-7. [2] 周孝信, 鲁宗相, 刘应梅, 等. 中国未来电网的发展模式和关键技术[J]. 中国电机工程学报, 2014, 34(29): 4999-5008. Zhou Xiaoxin, Lu Zongxiang, Liu Yingmei, et al. Devel-opment models and key technologies of future grid in China [J]. Proceedings of the CSEE, 2014, 34(29): 4999-5008. [3] 白建华, 辛颂旭, 刘俊, 等. 中国实现高比例可再生能源发展路径研究[J]. 中国电机工程学报, 2015, 35(14): 3699-3705. Bai Jianhua, Xin Songxu, Liu Jun, et al. Roadmap of realizing the high penetration renewable energy in China [J]. Proceedings of the CSEE, 2015, 35(14): 3699-3705. [4] Blaabjerg F, Ma K. Future on Power Electronics for Wind Turbine Systems[J]. IEEE Journal of Emerging & Selected Topics in Power Electronics, 2013, 1(3):139-152. [5] BLAABJERG F, IOV F, TEODORESCU R, et al. Power electronics in renewable energy systems[C]//Power Electronics and Motion Control Conference, 2006. EPE-PEMC 2006. 12th International. IEEE, 2006: 1-17. [6] Chakraborty A. Advancements in power electronics and drives in interface with growing renewable energy re-sources[J]. Renewable & Sustainable Energy Reviews, 2011, 15(4):1816-1827. [7] Carrasco J M, Franquelo L G, Bialasiewicz J T, et al. Pow-er-Electronic Systems for the Grid Integration of Renewable Energy Sources: A Survey[J]. IEEE Transactions on Industrial Electronics, 2006, 53(4):1002-1016. [8] FLOURENTZOU N, AGELIDIS V G, DEMETRIADES G D. VSC-Based HVDC power transmission systems: an overview[R]. IEEE Transactions on Power Electronics, 2009, 24(3):592-602. [9] KREMER W, CHAKRABORTY S, KROPOSKI B, et al. Advanced power electronic interfaces for distributed energy systems partl: systems and topologies[R]. Golden Colorado: National Renewable Energy Laboratory (NREL), Golden, Co. 2008. [10] Arulampalam A, Barnes M, Engler A, et al. Control of power electronic interfaces in distributed generation microgrids[J]. International Journal of Electronics, 2004, 91(9): 503-523. [11] Bouzid A M, Guerrero J M, Cheriti A, et al. A survey on control of electric power distributed generation systems for microgrid applications[J]. Renewable and Sustainable Energy Reviews, 2015, 44: 751-766. [12] Justo J J, Mwasilu F, Ju L, et al. AC-microgrids versus DC-microgrids with distributed energy resources: A re-view[J]. Renewable & Sustainable Energy Reviews, 2013, 24(10):387-405. [13] Bevrani H, Ghosh A, Ledwich G. Renewable energy sources and frequency regulation: survey and new perspectives[J]. IET Renewable Power Generation, 2010, 4(5):438-457. [14] Blaabjerg F, Dan M I. Renewable Energy Devices and Systems-State-of-the-Art Technology, Research and De-velopment, Challenges and Future Trends[J]. Electric Power Components & Systems, 2015, 43(12):1319-1328. [15] 张健, 屠竞哲, 印永华, 等. 直流送受端故障对送端系统稳定性影响的对比分析及控制措施[J]. 电网技术, 2016, 40(4): 999-1004. Zhang Jian, Tu Jingzhe, Yin Yonghua, et al. Comparison analysis and countermeasures on impact of HVDC sending- and receiving-side contingencies on sending-side system stability[J]. Power System Technology, 2016, 40(4): 999-1004. [16] 周保荣, 洪潮, 金小明, 等. 南方电网同步运行网架向异步运行网架的转变研究[J]. 中国电机工程学报, 2016, 36(8): 2084-2092. Zhou Baorong, Hong Chao, Jin Xiaoming, et al. Study of backbone structure change from synchronous to asynchro-nous in China southern power grid[J]. Proceedings of the CSEE, 2016, 36(8): 2084-2092. [17] 刘春晓, 张俊峰, 陈亦平,等. 异步联网方式下云南电网超低频振荡的机理分析与仿真[J]. 南方电网技术, 2016, 10(7):29-34. Liu Chunxiao, Zhang Junfeng, Chen Yiping, et al. Mechanism analysis and simulation on ultra-low frequency oscillation of Yunnan power grid in asynchronous interconnection mode[J]. Southern Power System Technology, 2016, 10(7):29-34. [18] 潘垣, 尹项根, 胡家兵, 等. 论基于柔直电网的西部风光能源集中开发与外送[J]. 电网技术, 2016, 40(12): 3621-3629. Pan Yuan, Yin Xianggen, Hu Jiabing, et al. Centralized ex-ploitation and large-scale delivery of wind and solar energies in west China based on flexible DC grid[J]. Power System Technology, 2016, 40(12): 3621-3629. [19] 中华人民共和国国家发展和改革委员会能源研究所. 中国2050高比例可再生能源发展情景暨途径研究[EB/OL]. (2015-04-20)[2017-08-11]. http://www.efchina.org/Attachments/Report/report-20150420/中国2050高比例可再生能源发展情景暨途径研究-摘要报告.pdf. [20] PENG F Z, LI Y W, TOLBERT L M. Control and protection of power electronics interfaced distributed generation systems in a customer-driven microgrid[C]//2009 IEEE Power & Energy Society General Meeting. IEEE, 2009: 1-8. [21] Tielens P, Hertern D V. The relevance of inertial in power systems[J]. Renewable and Sustainable Energy Reviews, 2016,55: 999-1009. [22] Guerrrero, J M, Vasquez J C, Matas J, et al. Hierarchical control of droop-controlled AC and DC micrgrids-a general approach toward standardization[J], IEEE Transactions on Industrial Electronics, 2011, 58(1): 157-172 [23] Zhong Q C, Weiss G. Synchronverters: Inverers that mic synchronous generators[J]. IEEE Transactions on Industrial Electronics, 2011,58(4): 1259-1267. [24] 吕志鹏, 盛万兴, 钟庆昌, 等. 虚拟同步发电机及其在微电网中的应用[J]. 中国电机工程学报, 2014, 34(16): 2591-2603. Lü Zhipeng, Sheng Wangxing, Zhong Qingcheng, et al. Virtual synchronous generator and its applications in mi-cro-grid [J]. Proceedings of the CSEE, 2014, 34(16): 2591-2603. [25] Zhang W, Cantarellas A M, Rocabert J, et al. Synchronous power controller with flexible droop characteristics for re-newable power generation systems[J]. IEEE Transactions on Sustainable Energy, 2016, 7(4): 1572-1582. [26] Ashabani M, Freijedo F D, Golestan S, et al. Inducverters: PLL-less converters with auto-synchronization and emulated inertia capability[J]. IEEE Transactions on Smart Grid, 2016, 7(3): 1660-1674. [27] Blaabjerg F, Teodorescu R, Liserre M, et al. Overview of control and grid synchronization for distributed power generation systems[J]. IEEE Transactions on Industrial Electronics, 2006, 53(5): 1398-1409. [28] 刘昇, 徐政, 李文云, 等. 用于改善交流系统暂态稳定性的 VSC-HVDC 交流电压–频率协调控制策略[J]. 中国电机工程学报, 2015, 35(19): 4879-4887. Liu Sheng, Xu Zheng, Li Wenyun, et al. VSC-HVDC AC voltage-frequency coordination control strategy for im-proving AC system transient stability [J]. Proceedings of the CSEE, 2015, 35(19): 4879-4887. |
[1] | Changhao XU, Weidong GUAN, Yue WANG, Jinshuai ZHANG, Peng WANG, Ning ZHOU, Bowen SHANG. Two-Layer MPC Virtual Inertia Control Strategy for Small-Scale Variable-Speed Pumped Storage Unit with Full-Size Converter [J]. Electric Power, 2025, 58(2): 216-226. |
[2] | Xue WANG, Lin LIU, Wendi LIU, Yanpeng ZHAI, Ling YANG, Fangyuan XU, Yan GAO, Jixin ZHANG. A Novel Inertia Delay Optimization Control Strategy for New Power Systems Based on Crisscross Optimization [J]. Electric Power, 2024, 57(7): 12-20. |
[3] | Zimin ZHU, Jinfang ZHANG, Qing CHANG, Zhuan ZHOU, Xiaolin ZHANG. Adaptive VSG Control Strategy of Sending End for Large-Scale Renewable Energy Connected to Weakly-Synchronized Support VSC-HVDC System [J]. Electric Power, 2024, 57(5): 211-221. |
[4] | Jiangfeng ZHANG, Song KE, Wenjin CHEN, Tianyu WANG, Keke ZHENG, Jun YANG. Virtual Synchronous Control Frequency Regulation Strategy for Adjustable Self-standby Rate in Photovoltaic Plants [J]. Electric Power, 2024, 57(11): 108-118. |
[5] | Yingjie HU, Qiang LI, Qun LI. Co-Optimization of Inertia and Droop Control Coefficient for Grid-Forming Photovoltaic-Storage System Considering Capacity Limits [J]. Electric Power, 2024, 57(10): 115-122. |
[6] | Rui WANG, Xueshen ZHAO, Xinhui ZHANG, Ke PENG, Honglu XU, Haoyue SUN. Virtual Inertia Parameter Feasible Region Based High-frequency Oscillation Suppression of DC Microgrid [J]. Electric Power, 2024, 57(10): 123-132. |
[7] | SUN Jiahang, WANG Xiaohua, HUANG Jingguang, CAO Hao, MEI Nuonan, LI Zhedong. MPC-VSG Based Control Strategy for Dynamic Stability of Frequency and Voltage in Islanded Microgrid [J]. Electric Power, 2023, 56(6): 51-60,81. |
[8] | XIANG Song, SU Peng, WU Jian, LIU Xin, MA Jitao. Inertia Optimization Control Model of AC/DC Sending-End System Based on Multi-source Energy Storage Coordination [J]. Electric Power, 2023, 56(4): 68-76. |
[9] | ZHANG Tao, LIU Kang, TAO Ran, WANG Qingchuan, HUANG Mingjuan. Optimal Scheduling of Integrated Energy System Considering Uncertainty of Heat Medium Flow Rate and Heating Network Loss [J]. Electric Power, 2023, 56(4): 146-155. |
[10] | Jianhua LI, Lu CAO, Renxin YANG, Zhenyan DENG, Zheng LI, Xu CAI. An Active Frequency Support Strategy for Costal Wind Farms in East China [J]. Electric Power, 2023, 56(11): 49-58, 112. |
[11] | LIU Zhaorui, JIA Qi, YAN Gangui, ZHAI Wenchao, SUN Yong, LI Baoju. Dynamic Coordination Mechanism of DFIGs Based on Inertia Response [J]. Electric Power, 2022, 55(7): 142-151. |
[12] | SHENG Shixian, ZHOU Xin, WANG Delin, LIAO Jiasi, LI Jingqi, KANG Jitao. Additional Damping Cooperative Control Method of Virtual Synchronous Wind Farm and Photovoltaic Power Stations [J]. Electric Power, 2022, 55(3): 177-186. |
[13] | GUO Xiaolong, ZHANG Jiangfei, KANG Pengpeng, YANG Guixing, SUN Yiqian, YUAN Tiejiang, LIU Yong. Virtual Synchronization Control Strategy for UHVDC with Secondary Frequency Modulation Based on PI Control [J]. Electric Power, 2022, 55(11): 66-72. |
[14] | YIN Kangyong, LIANG Wei, YANG Jibin, SUN Zhiming, ZHU Mengzhou, XIAO Peng. An Efficient Positioning Algorithm Based on UWB and IMU Fusion in Electric Power Operation Scenes [J]. Electric Power, 2021, 54(8): 83-90. |
[15] | YANG Lei, WANG Zhichao, ZHOU Xin, LI Shengnan, HE Peng, XIANG Chuan, ZHANG Jie, WANG Delin. Frequency Stability Control Strategy for Large-scale Grid Connections with DFIG Units [J]. Electric Power, 2021, 54(5): 186-194. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||