中国电力 ›› 2025, Vol. 58 ›› Issue (11): 193-204.DOI: 10.11930/j.issn.1004-9649.202404032
李成1(
), 张海昱2(
), 宋蕙慧2(
), 曲延滨2, 张新3, 李盈盈3
收稿日期:2024-04-07
修回日期:2024-12-09
发布日期:2025-12-01
出版日期:2025-11-28
作者简介:基金资助:
LI Cheng1(
), ZHANG Haiyu2(
), SONG Huihui2(
), QU Yanbin2, ZHANG Xin3, LI Yingying3
Received:2024-04-07
Revised:2024-12-09
Online:2025-12-01
Published:2025-11-28
Supported by:摘要:
为深入揭示同步现象下多种复杂系统隐含的集体动力学规律,引入Kuramoto模型以描述具有自然频率分布的全局正弦耦合相振子系统的演化过程。本文从振子同步的角度提出了孤岛微网系统的Kuramoto建模方法,阐明了微网各单元频率同步的暂态特性。首先,深入分析微网各单元运行特性和Kuramoto振子动态特性的相似性,根据运行特性差异建立其Kuramoto模型。然后,进一步根据其惯性特性推导出按惯性分类的Kuramoto振子动态方程,并构建一、二阶混合非均匀Kuramoto模型对系统整体进行表征。最后,基于Simulink仿真平台搭建3机5节点的微网系统,验证了Kuramoto同步理论在微网建模中的适用性,揭示了Kuramoto模型频率同步与微网由暂态到稳态过程的相似性,为暂态稳定性的定量分析以及暂态能量函数的构造奠定理论基础。
李成, 张海昱, 宋蕙慧, 曲延滨, 张新, 李盈盈. 基于Kuramoto耦合振子理论的孤岛微网系统建模[J]. 中国电力, 2025, 58(11): 193-204.
LI Cheng, ZHANG Haiyu, SONG Huihui, QU Yanbin, ZHANG Xin, LI Yingying. Islanded Microgrid System Modeling Based on Kuramoto Coupled Oscillator Theory[J]. Electric Power, 2025, 58(11): 193-204.
| 有无 惯性 | 发电单元 | 负荷单元 | 馈线单元 | 储能单元 | ||||
| 有 | 小型柴油 发电机; 双轴结构的 微型燃气轮机 | 电机型负荷 | — | — | ||||
| 无 | 变速风力发电; 光伏发电; 单轴结构的 微型燃气轮机 | 频率型负荷; 恒功率型负荷; 恒导纳型负荷 | 内部馈线 PCC开关 | 飞轮储能; 蓄电池储能; 超级电容; 燃料电池 |
表 1 微网系统单元组件划分
Table 1 Element component partition in microgrid
| 有无 惯性 | 发电单元 | 负荷单元 | 馈线单元 | 储能单元 | ||||
| 有 | 小型柴油 发电机; 双轴结构的 微型燃气轮机 | 电机型负荷 | — | — | ||||
| 无 | 变速风力发电; 光伏发电; 单轴结构的 微型燃气轮机 | 频率型负荷; 恒功率型负荷; 恒导纳型负荷 | 内部馈线 PCC开关 | 飞轮储能; 蓄电池储能; 超级电容; 燃料电池 |
| 典型无惯性单元 | 模型 | |
微网PCC开关节点![]() | 微网并网模式: 恒功率DER单元 | |
| 微网孤岛模式: 馈线单元 | ||
恒功率型负荷模型![]() | ||
| 恒电纳型负荷模型 | Kron化简 |
表 2 典型无惯性单元Kuramoto振子模型
Table 2 Special Kuramoto oscillator models without inertia
| 典型无惯性单元 | 模型 | |
微网PCC开关节点![]() | 微网并网模式: 恒功率DER单元 | |
| 微网孤岛模式: 馈线单元 | ||
恒功率型负荷模型![]() | ||
| 恒电纳型负荷模型 | Kron化简 |
| 节点 | 节点特性 | Mi(×104) | Di(×105) | PM,i(×104) | Ei | |||||
| 2 | 风力发电单元 | 0 | 0.56 | 1 | 310 | |||||
| 3 | 柴油发电机 | 0.61 | 0.83 | 2 | 310 | |||||
| 4 | 储能单元 | 0 | 1.60 | 3 | 310 | |||||
| 5 | 综合负荷单元 | 1.51 | 0.60 | –6 | 310 |
表 4 各节点参数
Table 4 Parameters of each node
| 节点 | 节点特性 | Mi(×104) | Di(×105) | PM,i(×104) | Ei | |||||
| 2 | 风力发电单元 | 0 | 0.56 | 1 | 310 | |||||
| 3 | 柴油发电机 | 0.61 | 0.83 | 2 | 310 | |||||
| 4 | 储能单元 | 0 | 1.60 | 3 | 310 | |||||
| 5 | 综合负荷单元 | 1.51 | 0.60 | –6 | 310 |
| 线路 | 节点 | 单位阻抗大小/(Ω·km–1) | 长度/km | |||
| 1 | 1-2 | 100 | ||||
| 2 | 2-3 | 2 | ||||
| 3 | 2-4 | 2 | ||||
| 4 | 2-5 | 1 | ||||
| 5 | 3-4 | 2 | ||||
| 6 | 3-5 | 1 | ||||
| 7 | 4-5 | 1 |
表 3 线路阻抗参数
Table 3 Line impedance parameters
| 线路 | 节点 | 单位阻抗大小/(Ω·km–1) | 长度/km | |||
| 1 | 1-2 | 100 | ||||
| 2 | 2-3 | 2 | ||||
| 3 | 2-4 | 2 | ||||
| 4 | 2-5 | 1 | ||||
| 5 | 3-4 | 2 | ||||
| 6 | 3-5 | 1 | ||||
| 7 | 4-5 | 1 |
| 节点号 | R + jX | aij(×104) | φij | |||
| 2-3 | 1.282+j5.36×10–3 | 3.77 | –0.3 | |||
| 2-4 | 1.282+j5.36×10–3 | 3.77 | –0.4 | |||
| 2-5 | 7.54 | 0.3 | ||||
| 3-4 | 1.282+j5.36×10–3 | 3.77 | –0.1 | |||
| 3-5 | 7.54 | 0.6 |
表 5 各节点之间的参数($ {\varphi _{ij}} = \arctan ({G_{ij}}/{B_{ij}}) $)
Table 5 Parameters between nodes
| 节点号 | R + jX | aij(×104) | φij | |||
| 2-3 | 1.282+j5.36×10–3 | 3.77 | –0.3 | |||
| 2-4 | 1.282+j5.36×10–3 | 3.77 | –0.4 | |||
| 2-5 | 7.54 | 0.3 | ||||
| 3-4 | 1.282+j5.36×10–3 | 3.77 | –0.1 | |||
| 3-5 | 7.54 | 0.6 |
| 1 | 丁坤, 陈博洋, 秦建茹, 等. 大规模新能源集群接入弱电网的消纳能力评估方法[J]. 电力建设, 2023, 44 (11): 86- 94. |
| DING Kun, CHEN Boyang, QIN Jianru, et al. Evaluation method of consumption ability of new large scale energy clusters connected to weak grids[J]. Electric Power Construction, 2023, 44 (11): 86- 94. | |
| 2 | 林其友, 蒋文良, 李媛媛, 等. 基于母线电压分层的直流微网系统协调控制[J]. 中国电力, 2022, 55 (2): 166- 171,180. |
| LIN Qiyou, JIANG Wenliang, LI Yuanyuan, et al. Coordinated control of DC microgrid system based on bus voltage stratification[J]. Electric Power, 2022, 55 (2): 166- 171,180. | |
| 3 |
ROSSO R, WANG X F, LISERRE M, et al. Grid-forming converters: control approaches, grid-synchronization, and future trends—a review[J]. IEEE Open Journal of Industry Applications, 2021, 2, 93- 109.
DOI |
| 4 | KURAMOTO Y. Self-entrainment of a population of coupled non-linear oscillators[J]. Proceedings of the International Symposium on Mathematical Problems in Theoretical Physics, 1975, 39, 420- 422. |
| 5 |
林伟廷, 曹娟. 基于Kuramoto的常规导弹作战体系同步效能评估[J]. 指挥控制与仿真, 2018, 40 (1): 75- 79.
DOI |
|
LIN Weiting, CAO Juan. Effectiveness evaluation for synchronous characteristics of convetional missile combat system based on kuramoto model[J]. Command Control & Simulation, 2018, 40 (1): 75- 79.
DOI |
|
| 6 | DÖRFLER F, CHERTKOV M, BULLO F. Synchronization in complex oscillator networks and smart grids[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110 (6): 2005- 2010. |
| 7 |
FILATRELLA G, NIELSEN A H, PEDERSEN N F. Analysis of a power grid using a Kuramoto-like model[J]. The European Physical Journal B, 2008, 61 (4): 485- 491.
DOI |
| 8 | 万千, 夏成军, 管霖, 等. 含高渗透率分布式电源的独立微网的稳定性研究综述[J]. 电网技术, 2019, 43 (2): 598- 612. |
| WAN Qian, XIA Chengjun, GUAN Lin, et al. Review on stability of isolated microgrid with highly penetrated distributed generations[J]. Power System Technology, 2019, 43 (2): 598- 612. | |
| 9 | 朱蜀, 刘开培, 秦亮, 等. 电力电子化电力系统暂态稳定性分析综述[J]. 中国电机工程学报, 2017, 37 (14): 3947- 3962. |
| ZHU Shu, LIU Kaipei, QIN Liang, et al. Analysis of transient stability of power electronics dominated power system: an overview[J]. Proceedings of the CSEE, 2017, 37 (14): 3947- 3962. | |
| 10 | 周艳真, 查显煜, 兰健, 等. 基于数据增强和深度残差网络的电力系统暂态稳定预测[J]. 中国电力, 2020, 53 (1): 22- 31. |
| ZHOU Yanzhen, ZHA Xianyu, LAN Jian, et al. Transient stability prediction of power systems based on deep residual network and data augmentation[J]. Electric Power, 2020, 53 (1): 22- 31. | |
| 11 | 黎萌. 电力系统暂态稳定时域仿真终止判据的研究[D]. 杭州: 浙江大学, 2015. |
| LI Meng. Research on termination algorithm of time-domain simulation for power system transient stability[D]. Hangzhou: Zhejiang University, 2015. | |
| 12 | KUNDUR P. 电力系统稳定与控制[M]. 《电力系统稳定与控制》翻译组, 译. 北京: 中国电力出版社, 2002. |
| KUNDUR P. Power system stability and control[M]. "Power System Stability and Control"translation group, Translated. Beijing: China Electric Power Press, 2002. | |
| 13 | DÖRFLER F, BULLO F. Transient stability analysis in power networks and synchronization of non-uniform Kuramoto oscillators[J]. Journal of Nanjing Institute of Meteorology, 2009. |
| 14 |
DE PERSIS C, MONSHIZADEH N. Bregman storage functions for microgrid control[J]. IEEE Transactions on Automatic Control, 2018, 63 (1): 53- 68.
DOI |
| 15 |
ZHU L J, HILL D J. Stability analysis of power systems: a network synchronization perspective[J]. SIAM Journal on Control and Optimization, 2018, 56 (3): 1640- 1664.
DOI |
| 16 |
SCHMIETENDORF K, PEINKE J, KAMPS O. The impact of turbulent renewable energy production on power grid stability and quality[J]. The European Physical Journal B, 2017, 90 (11): 222.
DOI |
| 17 |
DÖRFLER F, BULLO F. On the critical coupling for kuramoto oscillators[J]. SIAM Journal on Applied Dynamical Systems, 2011, 10 (3): 1070- 1099.
DOI |
| 18 |
DORFLER F, BULLO F. Kron reduction of graphs with applications to electrical networks[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2013, 60 (1): 150- 163.
DOI |
| 19 |
DORFLER F, BULLO F. Synchronization of power networks: network reduction and effective resistance[J]. IFAC Proceedings Volumes, 2010, 43 (19): 197- 202.
DOI |
| 20 | DÖRFLER F, BULLO F. Spectral analysis of synchronization in a lossless structure-preserving power network model[C]//2010 First IEEE International Conference on Smart Grid Communications. Gaithersburg, MD, USA. IEEE, 2010: 179–184. |
| 21 | DÖRFLER F, BULLO F. Synchronization and transient stability in power networks and non-uniform Kuramoto oscillators[C]//Proceedings of the 2010 American Control Conference. Baltimore, MD, USA. IEEE, 2010: 930–937. |
| 22 | DÖRFLER F, BULLO F. Topological equivalence of a structure-preserving power network model and a non-uniform Kuramoto model of coupled oscillators[C]//2011 50th IEEE Conference on Decision and Control and European Control Conference. Orlando, FL, USA. IEEE, 2011: 7099–7104. |
| 23 |
DÖRFLER F, BULLO F. Synchronization in complex networks of phase oscillators: a survey[J]. Automatica, 2014, 50 (6): 1539- 1564.
DOI |
| 24 | 杨柳. 基于二阶非均匀Kuramoto模型的电力系统暂态稳定分析[D]. 哈尔滨: 哈尔滨工业大学, 2015. |
| YANG Liu. Power system transient stability analysis via second-order non-uniform kuramoto model[D]. Harbin: Harbin Institute of Technology, 2015. | |
| 25 | SONAM K, WAGH S R, SINGH N M. Synchronized operating point stability of multimachine power system using holomorphic embedding in kuramoto framework[C]//2019 North American Power Symposium (NAPS). Wichita, KS, USA. IEEE, 2019: 1–6. |
| 26 | 张谦. 基于改进Gronwall不等式的电力系统暂态稳定研究[D]. 杭州: 浙江大学, 2022. |
| ZHANG Qian. Stability based on improved Gronwall inequality[D]. Hangzhou: Zhejiang University, 2022. | |
| 27 |
WU L, POTA H R, PETERSEN I R. Synchronization conditions for a multirate kuramoto network with an arbitrary topology and nonidentical oscillators[J]. IEEE Transactions on Cybernetics, 2019, 49 (6): 2242- 2254.
DOI |
| 28 |
CHOI Y P, LI Z C. Synchronization of nonuniform Kuramoto oscillators for power grids with general connectivity and dampings[J]. Nonlinearity, 2019, 32 (2): 559- 583.
DOI |
| 29 | 邹焱. 基于Kuramoto模型的电力系统暂态稳定性分析与提升方法[D]. 杭州: 浙江大学, 2023. |
| 30 | 郑志刚, 李晓文, 张廷宪. 同步现象: Kuramoto模型及其他[C]//2007年全国复杂系统研究论坛. 北京: 2007年全国复杂系统研究论坛论文汇编, 2005: 379–394. |
| ZHENG Zhigang, LI Xiaowen, ZHANG Tingxian. Synchronization phenomenon: Kuramoto model and others[C]//2007 National Forum on complex Systems Research. Beijing, China: Papers Compilation of the National Forum on complex Systems Research 2007, 2005: 379–394. | |
| 31 | 薛小平. 关于2类群体运动模型的综述: Cucker-Smale模型与Kuramoto模型[J]. 四川师范大学学报(自然科学版), 2017, 40 (6): 711- 721. |
| XUE Xiaoping. A survey on two types of multi-agent models: the Cucker-Smale model and the Kuramoto model[J]. Journal of Sichuan Normal University (Natural Science), 2017, 40 (6): 711- 721. | |
| 32 |
CONROY J F, WATSON R. Frequency response capability of full converter wind turbine generators in comparison to conventional generation[J]. IEEE Transactions on Power Systems, 2008, 23 (2): 649- 656.
DOI |
| 33 |
毋炳鑫, 谢卫华, 叶红恩. 交直流混合微电网直流母线电压稳定控制技术[J]. 中国电力, 2017, 50 (1): 62- 66.
DOI |
|
WU Bingxin, XIE Weihua, YE Hongen. Study on DC bus voltage deviation control autonomy in hybrid AC/DC micro-grid[J]. Electric Power, 2017, 50 (1): 62- 66.
DOI |
|
| 34 | 李佳蔚, 张冠宇. 大规模分布式新能源接入对省级电网稳定性影响[J]. 中国电力, 2024, 57 (6): 174- 180. |
| LI Jiawei, ZHANG Guanyu. Impact of large scale distributed new energy access on provincial power grid stability[J]. Electric Power, 2024, 57 (6): 174- 180. | |
| 35 | 孙佳航, 王小华, 黄景光, 等. 基于MPC-VSG的孤岛微电网频率和电压动态稳定控制策略[J]. 中国电力, 2023, 56 (6): 51- 60, 81. |
| SUN Jiahang, WANG Xiaohua, HUANG Jingguang, et al. MPC-VSG based control strategy for dynamic stability of frequency and voltage in islanded microgrid[J]. Electric Power, 2023, 56 (6): 51- 60, 81. |
| [1] | 王学军, 方水平, 池光湧. 考虑密集通道的多机电力系统暂态稳定性评估方法[J]. 中国电力, 2025, 58(8): 139-146. |
| [2] | 马晓阳, 杨顺, 刘宇, 王晓冰, 汪颖. 基于分岔和突变理论的VSG突变机理研究[J]. 中国电力, 2025, 58(7): 91-104. |
| [3] | 陈仕龙, 吴涛, 郭成, 毕贵红, 钱永亮. 基于相关性分析的电网非同步监测数据场景谐波责任划分[J]. 中国电力, 2025, 58(1): 15-25. |
| [4] | 戴朝波, 赵国亮, 杨志昌, 崔镜心. 基于二阶广义积分器单相锁频环的改进和比较[J]. 中国电力, 2025, 58(1): 61-69. |
| [5] | 王泽嘉, 韩民晓, 范溢文. 基于SVG附加电流反馈阻抗重塑的双馈风电场次/超同步振荡抑制策略[J]. 中国电力, 2024, 57(8): 55-66. |
| [6] | 王雪, 刘林, 刘文迪, 翟延鹏, 杨苓, 许方园, 高岩, 张纪欣. 基于纵横交叉算法的新型电力系统惯量延迟优化控制策略[J]. 中国电力, 2024, 57(7): 12-20. |
| [7] | 柳丹, 江克证, 康逸群, 冀肖彤, 徐韫钰, 刘芳. 弱电网下新能源逆变器自同步电压源低电压穿越控制方法[J]. 中国电力, 2024, 57(7): 21-29. |
| [8] | 赵牧驰, 汪海蛟, 刘纯, 何国庆, 孙艳霞, 王盼盼. 汽轮机发电机组宽频带阻抗建模及次/超同步振荡分析[J]. 中国电力, 2024, 57(7): 238-246. |
| [9] | 曹宇, 胡鹏飞, 蔡婉琪, 王曦, 江道灼, 梁一桥. 基于MMC的超级电容与蓄电池混合储能系统及其混合同步控制策略[J]. 中国电力, 2024, 57(6): 78-89. |
| [10] | 李佳蔚, 张冠宇. 大规模分布式新能源接入对省级电网稳定性影响[J]. 中国电力, 2024, 57(6): 174-180. |
| [11] | 朱子民, 张锦芳, 常清, 周专, 张晓林. 大规模新能源接入弱同步支撑柔直系统的送端自适应VSG控制策略[J]. 中国电力, 2024, 57(5): 211-221. |
| [12] | 周于清, 李大虎, 姚伟, 宗启航, 周泓宇, 文劲宇. 受端近区光伏电站对LCC-HVDC系统稳定性影响分析[J]. 中国电力, 2024, 57(3): 170-182. |
| [13] | 黄兴华, 吴涵, 陈石川, 范元亮, 张功林. 考虑新能源出力的孤岛微网储能配置优化方法[J]. 中国电力, 2024, 57(12): 132-138. |
| [14] | 田宝江, 李岩, 廖晓玉, 杜兴伟, 段文岩. 基于小波变换检测信号奇异性的多厂站信息同步方案[J]. 中国电力, 2024, 57(12): 188-197. |
| [15] | 夏向阳, 蒋戴宇, 曾小勇, 龚芬, 吴小忠, 华夏, 罗彦鹏, 石超. 基于虚拟振荡器控制的储能变流器控制策略研究[J]. 中国电力, 2024, 57(11): 70-77. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||


AI小编