中国电力 ›› 2025, Vol. 58 ›› Issue (8): 94-102.DOI: 10.11930/j.issn.1004-9649.202412081
收稿日期:
2024-12-19
发布日期:
2025-08-26
出版日期:
2025-08-28
作者简介:
基金资助:
CHEN Xiaoqian(), YIN Liang(
), ZHAN Zonghui, WANG Fang, LI Xutao
Received:
2024-12-19
Online:
2025-08-26
Published:
2025-08-28
Supported by:
摘要:
为提高风电机组故障识别准确率,提出一种基于注意力机制(attention mechanism,AM)和残差胶囊网络(residual capsule network,RCN)与双向长短期记忆(bidirectional long short-term memory,BiLSTM)网络融合的RCN-BiLSTM-Attention风电机组故障识别方法。首先,风电机组监控与数据采集(supervisory control and data acquisition,SCADA)系统中的异常值通过基于密度的有噪声空间聚类(density-based spatial clustering of applications with noise,DBSCAN)算法剔除;然后,通过RCN提取故障数据中的空间关系特征,采用BiLSTM网络动态捕获RCN所提取空间特征的层次时间依赖关系,得到多种故障时序信息,并融合AM对BiLSTM的输出赋予不同权重,以提高风电机组故障识别准确性;最后,通过多个风电机组SCADA数据进行验证,所提模型具有较高的识别准确率和泛化能力。
陈小乾, 尹亮, 展宗辉, 王放, 李旭涛. 基于注意力机制和RCN-BiLSTM融合的风电机组故障识别[J]. 中国电力, 2025, 58(8): 94-102.
CHEN Xiaoqian, YIN Liang, ZHAN Zonghui, WANG Fang, LI Xutao. Fault Identification for Wind Turbine Based on Attention Mechanism and RCN-BiLSTM Fusion[J]. Electric Power, 2025, 58(8): 94-102.
模型 | 平均 准确率 | 平均 精确率 | 平均 召回率 | 平均 F1值 | ||||
DT | 85.71 | 70.90 | 71.43 | 71.16 | ||||
LSTM | 86.46 | 72.06 | 73.68 | 72.86 | ||||
BiLSTM | 88.68 | 77.27 | 76.69 | 76.98 | ||||
CNN-BiLSTM | 93.88 | 86.23 | 89.47 | 87.82 | ||||
RCN-BiLSTM | 95.73 | 91.67 | 90.98 | 91.32 | ||||
RCN-BiLSTM- Attention | 97.77 | 94.81 | 96.24 | 95.52 |
表 1 不同模型性能对比
Table 1 Performance comparison of different models 单位:%
模型 | 平均 准确率 | 平均 精确率 | 平均 召回率 | 平均 F1值 | ||||
DT | 85.71 | 70.90 | 71.43 | 71.16 | ||||
LSTM | 86.46 | 72.06 | 73.68 | 72.86 | ||||
BiLSTM | 88.68 | 77.27 | 76.69 | 76.98 | ||||
CNN-BiLSTM | 93.88 | 86.23 | 89.47 | 87.82 | ||||
RCN-BiLSTM | 95.73 | 91.67 | 90.98 | 91.32 | ||||
RCN-BiLSTM- Attention | 97.77 | 94.81 | 96.24 | 95.52 |
1 |
李丹, 梁云嫣, 缪书唯, 等. 基于高斯混合聚类和改进条件变分自编码的多风电场功率日场景生成方法[J]. 中国电力, 2024, 57 (12): 17- 29.
DOI |
LI Dan, LIANG Yunyan, MIAO Shuwei, et al. Daily power scenario generation method for multiple wind farms based on Gaussian mixture clustering and improved conditional variational autoencoder[J]. Electric Power, 2024, 57 (12): 17- 29.
DOI |
|
2 |
张睿骁, 梁利, 王定美. 新能源场站快速频率响应分析与高效测试装置设计[J]. 中国电力, 2025, 58 (5): 144- 151.
DOI |
ZHANG Ruixiao, LIANG Li, WANG Dingmei. Fast frequency response analysis and efficient test device design of new energy station[J]. Electric Power, 2025, 58 (5): 144- 151.
DOI |
|
3 | 徐贤, 朱丹丹, 徐晓春, 等. 海上风电集群AVC子站无功电压灵敏度协同控制策略研究[J]. 电测与仪表, 2025, 62 (4): 53- 64. |
XU Xian, ZHU Dandan, XU Xiaochun, et al. Study on cooperative reactive voltage sensitivity control strategy of AVC substations in clustered offshore wind farm[J]. Electrical Measurement & Instrumentation, 2025, 62 (4): 53- 64. | |
4 | 杜谦, 张金龙, 陈武晖. 考虑集电系统元件故障的风电场可靠性评估[J]. 内蒙古电力技术, 2024, 42 (4): 73- 79. |
DU Qian, ZHANG Jinlong, CHEN Wuhui. Reliability evaluation of wind farm considering component faults in collecting system[J]. Inner Mongolia Electric Power, 2024, 42 (4): 73- 79. | |
5 | 李令宇, 程浩忠, 张衡, 等. 含高比例新能源电力系统的低碳电源规划方法[J]. 电测与仪表, 2025, 62 (7): 30- 37. |
LI Lingyu, CHENG Haozhong, ZHANG Heng, et al. Low-carbon power planning method for power system with high proportion of renewable energy[J]. Electrical Measurement & Instrumentation, 2025, 62 (7): 30- 37. | |
6 |
龙寰, 杨婷, 徐劭辉, 等. 基于数据驱动的风电机组状态监测与故障诊断技术综述[J]. 电力系统自动化, 2023, 47 (23): 55- 69.
DOI |
LONG Huan, YANG Ting, XU Shaohui, et al. Review of data-driven condition monitoring and fault diagnosis technologies for wind turbines[J]. Automation of Electric Power Systems, 2023, 47 (23): 55- 69.
DOI |
|
7 | 罗必雄, 胡均亮, 杨亚军, 等. 计及纵向扰动稳定的高空风电系统建模与稳定运行控制方法[J]. 南方能源建设, 2025, 12 (1): 1- 11. |
LUO Bixiong, HU Junliang, YANG Yajun, et al. Modeling and stable operation control method for airborne wind energy system considering longitudinal disturbance stability[J]. Southern Energy Construction, 2025, 12 (1): 1- 11. | |
8 | 张秀琦, 胡学超, 李勇. 风电机组设备可靠性分析及提升方法研究[J]. 内蒙古电力技术, 2024, 42 (3): 8- 12. |
ZHANG Xiuqi, HU Xuechao, LI Yong. Research on equipment reliability analysis and improvement methods for wind turbine[J]. Inner Mongolia Electric Power, 2024, 42 (3): 8- 12. | |
9 | 张振海, 王维庆, 王海云, 等. 基于改进小波包的风电机组齿轮箱复合故障特征提取研究[J]. 太阳能学报, 2022, 43 (9): 331- 336. |
ZHANG Zhenhai, WANG Weiqing, WANG Haiyun, et al. Research on composite fault feature extraction of wind turbine gearbox based on improved wavelet packet[J]. Acta Energiae Solaris Sinica, 2022, 43 (9): 331- 336. | |
10 |
孙群丽, 周瑛, 刘长良. 基于LARS特征选择的风电机组故障诊断的研究[J]. 可再生能源, 2020, 38 (10): 1349- 1354.
DOI |
SUN Qunli, ZHOU Ying, LIU Changliang. Research on fault diagnosis of wind turbines based on LARS feature selection[J]. Renewable Energy Resources, 2020, 38 (10): 1349- 1354.
DOI |
|
11 |
AHILAN T, NARASIMHULU ANDRIYA, PRASAD DVSSSV. A self-improved optimizer-based CNN for wind turbine fault detection[J]. Journal of Circuits Systems and Computers, 2023, 32 (14): 2350247.
DOI |
12 |
XIE P, ZHANG X M, JIANG G Q, et al. Investigation of deep transfer learning for cross-turbine diagnosis of wind turbine faults[J]. Measurement Science and Technology, 2023, 34 (4): 044009.
DOI |
13 | 周凌, 赵前程, 朱岸锋, 等. 基于FISSA-DBN模型的风电机组运行状态监测[J]. 振动·测试与诊断, 2023, 43 (1): 80- 87, 199. |
ZHOU Ling, ZHAO Qiancheng, ZHU Anfeng, et al. Wind turbine operation status monitoring based on FISSA-DBN model[J]. Journal of Vibration, Measurement & Diagnosis, 2023, 43 (1): 80- 87, 199. | |
14 |
WANG X, ZHENG Z, JIANG G Q, et al. Detecting wind turbine blade icing with a multiscale long short-term memory network[J]. Energies, 2022, 15 (8): 2864.
DOI |
15 |
JIANG G Q, YUE R X, HE Q, et al. Imbalanced learning for wind turbine blade icing detection via spatio-temporal attention model with a self-adaptive weight loss function[J]. Expert Systems with Applications, 2023, 229, 120428.
DOI |
16 |
陈庆, 柳雨生, 段练达, 等. 大语言模型融合知识图谱的风电运维问答系统研究[J]. 综合智慧能源, 2024, 46 (9): 61- 68.
DOI |
CHEN Qing, LIU Yusheng, DUAN Lianda, et al. Research on a wind power operation and maintenance Q & A system based on large language models and knowledge graphs[J]. Integrated Intelligent Energy, 2024, 46 (9): 61- 68.
DOI |
|
17 | 马嘉晨, 袁满, 杨德友, 等. 用于提升风电消纳能力的高载能负荷调度策略研究[J]. 东北电力大学学报, 2024, 44 (2): 79- 87. |
MA Jiachen, YUAN Man, YANG Deyou, et al. Research on high-energy load dispatching strategy usedto improve wind power ability[J]. Journal of Northeast Electric Power University, 2024, 44 (2): 79- 87. | |
18 | 骆尧涵, 汤皓环, 李金裕, 等. 基于电压迭代的直驱风电场短路电流计算方法[J]. 浙江电力, 2024, 43 (10): 75- 84. |
LUO Yaohan, TANG Haohuan, LI Jinyu, et al. A short-circuit current calculation method for direct-driven wind farms based on voltage iteration[J]. Zhejiang Electric Power, 2024, 43 (10): 75- 84. | |
19 | 尹子康, 林忠伟, 吕广华, 等. 基于数据驱动的风电机组变桨系统故障诊断与健康状态预测研究[J]. 东北电力大学学报, 2023, 43 (5): 1- 11, 17. |
YIN Zikang, LIN Zhongwei, LV Guanghua, et al. Research on fault diagnosis and health state prediction of wind turbine variable pitch system based on data drive[J]. Journal of Northeast Electric Power University, 2023, 43 (5): 1- 11, 17. | |
20 | 毛煜, 尚海昆, 于卓琦. 基于长短期记忆网络的电网同调机群快速辨识[J]. 电气工程学报, 2022, 17 (2): 201- 207. |
MAO Yu, SHANG Haikun, YU Zhuoqi. A fast prediction method of coherent generators based on long short-term memory network[J]. Journal of Electrical Engineering, 2022, 17 (2): 201- 207. | |
21 | 任建吉, 位慧慧, 邹卓霖, 等. 基于CNN-BiLSTM-Attention的超短期电力负荷预测[J]. 电力系统保护与控制, 2022, 50 (8): 108- 116. |
REN Jianji, WEI Huihui, ZOU Zhuolin, et al. Ultra-short-term power load forecasting based on CNN-BiLSTM-Attention[J]. Power System Protection and Control, 2022, 50 (8): 108- 116. | |
22 |
武煜昊, 王永生, 徐昊, 等. 风电输出功率预测技术研究综述[J]. 计算机科学与探索, 2022, 16 (12): 2653- 2677.
DOI |
WU Yuhao, WANG Yongsheng, XU Hao, et al. Survey of wind power output power forecasting technology[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16 (12): 2653- 2677.
DOI |
|
23 |
DASZYKOWSKI M, WALCZAK B, MASSART D L. Looking for natural patterns in data[J]. Chemometrics and Intelligent Laboratory Systems, 2001, 56 (2): 83- 92.
DOI |
24 |
JIA X D, JIN C, BUZZA M, et al. Wind turbine performance degradation assessment based on a novel similarity metric for machine performance curves[J]. Renewable Energy, 2016, 99, 1191- 1201.
DOI |
25 | 慕宗君, 邱俊宏, 李振兴, 等. 多类型故障影响下柔直线路故障机理分析及单端保护方法[J]. 中国电力, 2025, 58 (1): 107- 114. |
MU Zongjun, QIU Junhong, LI Zhenxing, et al. Fault mechanism analysis and one-terminal protection method of flexible DC transmission line under the influence of multi-type faults[J]. Electric Power, 2025, 58 (1): 107- 114. | |
26 | 曹力潭, 魏华兵, 黄智, 等. 基于LSTM神经网络的电抗器故障声纹识别方法[J]. 浙江电力, 2023, 42 (4): 114- 120. |
CAO Litan, WEI Huabing, HUANG Zhi, et al. Research on voiceprint recognition of reactor fault based on LSTM neural network[J]. Zhejiang Electric Power, 2023, 42 (4): 114- 120. | |
27 | 金恩淑, 张弼弘, 胡晓晨, 等. 基于限流电抗器电压的柔性直流配电线路单端量保护新方法[J]. 东北电力大学学报, 2024, 44 (3): 64- 73. |
JIN Enshu, ZHANG Bihong, HU Xiaochen, et al. A new method of single-terminal protection for flexible DC distribution lines based on current-limiting reactor voltage[J]. Journal of Northeast Electric Power University, 2024, 44 (3): 64- 73. | |
28 |
皮俊波, 齐世雄, 孙文多, 等. 基于UIE框架的电网故障处置预案实体和事件识别方法[J]. 中国电力, 2023, 56 (12): 138- 146.
DOI |
PI Junbo, QI Shixiong, SUN Wenduo, et al. Entity and event recognition method for power grid fault handling plan based on UIE framework[J]. Electric Power, 2023, 56 (12): 138- 146.
DOI |
|
29 | 黄雯, 张紫凡, 梁展弘, 等. 基于小波算法的小电流接地系统高阻接地故障的识别[J]. 内蒙古电力技术, 2023, 41 (4): 60- 65. |
HUANG Wen, ZHANG Zifan, LIANG Zhanhong, et al. Identification of high resistance grounding fault in small current earthing system based on wavelet algorithm[J]. Inner Mongolia Electric Power, 2023, 41 (4): 60- 65. | |
30 |
冯骥, 杨国华, 史磊, 等. 基于并行融合深度残差收缩网络的有源配电网故障诊断[J]. 综合智慧能源, 2024, 46 (6): 8- 15.
DOI |
FENG Ji, YANG Guohua, SHI Lei, et al. Research on fault diagnosis of active distribution network based on parallel fusion deep residual shrinkage network[J]. Integrated Intelligent Energy, 2024, 46 (6): 8- 15.
DOI |
|
31 | 罗美玲, 李紫肖, 郑涛, 等. 基于模糊多判据融合的单端暂态量保护新方案[J]. 中国电力, 2024, 57 (3): 60- 72. |
LUO Meiling, LI Zixiao, ZHENG Tao, et al. Single terminal transient protection scheme based on fuzzy multi-criteria fusion[J]. Electric Power, 2024, 57 (3): 60- 72. |
[1] | 季湛洋, 胡阳, 孔令行, 宋子秋, 邓丹, 刘吉臻. 考虑多领域耦合特性的风电机组一次调频动态建模与仿真[J]. 中国电力, 2025, 58(4): 56-67. |
[2] | 王晓东, 李清, 付德义, 刘颖明, 王若瑾. 基于卷积双向长短期记忆网络的风电机组传动系统疲劳载荷预测[J]. 中国电力, 2025, 58(4): 90-97. |
[3] | 李丹, 秦世耀, 李少林, 贺敬. 基于混沌粒子群的双馈风电机组LVRT实测建模及暂态参数辨识[J]. 中国电力, 2024, 57(8): 75-84. |
[4] | 赵晶晶, 杜明, 刘帅, 李梓博, 马闻鹤. 基于模型预测控制的双馈风电机组调频与转子转速恢复策略[J]. 中国电力, 2023, 56(6): 11-17. |
[5] | 李博浩, 郭昆丽, 吕家君, 蔡维正, 刘璐豪, 刘凤仪, 郝翊帆. 弱电网下改进LADRC抑制直驱风机次同步振荡研究[J]. 中国电力, 2023, 56(4): 56-67. |
[6] | 李冰, 白云山, 赵宽, 郭聪彬, 翟永杰. 基于HSCA-YOLOv7的风电机组叶片表面缺陷检测算法[J]. 中国电力, 2023, 56(10): 43-52. |
[7] | 马海飞, 滕伟, 彭迪康, 柳亦兵, 靳涛. 基于DRS与改进Autogram的风电齿轮箱复合故障特征提取[J]. 中国电力, 2023, 56(10): 71-79. |
[8] | 王磊, 柳亦兵, 滕伟, 黄心伟, 刘剑韬. 风电机组叶片无损检测技术研究与进展[J]. 中国电力, 2023, 56(10): 80-95. |
[9] | 吴宇辉, 张扬帆, 高峰, 王玙, 王耀函, 杨伟新, 张鸿. 基于工作模态分析的风电机组叶片裂纹损伤在线监测研究[J]. 中国电力, 2023, 56(10): 106-114. |
[10] | 王宇航, 王文玲, 周绪红, 王康, 罗崯滔. 海上风电机组格构式浮式基础结构优化及响应分析[J]. 中国电力, 2022, 55(5): 21-31. |
[11] | 包海龙, 邵宇鹰, 王枭, 彭鹏, 袁国刚, 庄贝妮. 基于反卷积波束形成算法的干式变压器异响故障识别技术[J]. 中国电力, 2022, 55(2): 90-97. |
[12] | 汤未, 于溯, 郑涛, 于欢昌, 倪钰翔, 孟令昆. 基于交直流保护协同配合的交直流碰线保护新方案[J]. 中国电力, 2022, 55(11): 41-50. |
[13] | 滕伟, 黄乙珂, 吴仕明, 柳亦兵. 基于XGBoost与LSTM的风力发电机绕组温度预测[J]. 中国电力, 2021, 54(6): 95-103. |
[14] | 杨蕾, 王智超, 周鑫, 李胜男, 和鹏, 向川, 张杰, 王德林. 大规模双馈风电机组并网频率稳定控制策略[J]. 中国电力, 2021, 54(5): 186-194. |
[15] | 唐英杰, 张哲任, 徐政. 基于二极管不控整流单元的远海风电低频交流送出方案[J]. 中国电力, 2020, 53(7): 44-54,168. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||