中国电力 ›› 2024, Vol. 57 ›› Issue (7): 74-80.DOI: 10.11930/j.issn.1004-9649.202310049

• 新型电力系统不确定性建模与运行决策 • 上一篇    下一篇

基于时空关联特征与B-LSTM模型的分布式光伏功率区间预测

王海军1(), 居蓉蓉2(), 董颖华2()   

  1. 1. 南京铁道职业技术学院,江苏 南京 210031
    2. 中国电力科学研究院有限公司,江苏 南京 210003
  • 收稿日期:2023-10-18 出版日期:2024-07-28 发布日期:2024-07-23
  • 作者简介:王海军(1982—),男,硕士,副教授,高级工程师,从事电力系统规划研究,E-mail:whj0421@163.com
    居蓉蓉(1983—),女,通信作者,硕士,高级工程师,从事新型电力系统的不确定性建模研究,E-mail:1321929676@qq.com
    董颖华(1985—),男,硕士,高级工程师,从事新能源发电检测与评估技术研究,E-mail:85090353@qq.com
  • 基金资助:
    江苏省自然科学基金资助项目(BK20210046);江苏省333项目(500RC33322003 、5002023006-1);南京铁道职业技术学院“青蓝工程”(QLXJ202111);南京铁道职业技术学院轨道交通基础设施智能检测研究中心科研平台资助项目(KYPT2023003)。

Distributed Photovoltaic Power Interval Prediction Based on Spatio-Temporal Correlation Feature and B-LSTM Model

Haijun WANG1(), Rongrong JU2(), Yinghua DONG2()   

  1. 1. Nanjing Vocational Institute of Railway Technology, Nanjing 210031, China
    2. China Electric Power Research Institute, Nanjing 210003, China
  • Received:2023-10-18 Online:2024-07-28 Published:2024-07-23
  • Supported by:
    This work is supported by Natural Science Foundation of Jiangsu Province (No.BK20210046), the Sixth "333" Project of Jiangsu Province (No.500RC33322003, No.5002023006-1), Qing Lan Project of Nanjing Vocational Institute of Railway Technology (No.QLXJ202111), Funding for Scientific Research Platform for Railway Infrastructure Intelligent Inspection Research Centre of Nanjing Railway Vocational and Technical College (No.KYPT2023003).

摘要:

提出一种基于时空关联特征与贝叶斯-长短期记忆神经网络(bayesian long short-term memory,B-LSTM)模型的分布式光伏功率区间预测方法。以长短期记忆神经网络(long short-term memory,LSTM)为基础构建近似贝叶斯神经网络,建立考虑时空关联特征的B-LSTM模型,利用其强大的记忆能力和特征提取不同特征尺度的模态分量,并进行分布式光伏功率区间预测。以某地区实际分布式光伏数据集进行算例分析,验证了所提方法的优越性。

关键词: 分布式光伏, 时空关联性, 区间预测

Abstract:

A distributed photovoltaic (PV) power interval prediction method based on spatio-temporal correlation features and bayesian long short-term memory (B-LSTM) model is proposed. The approximate Bayesian neural network is constructed by adding a Dropout layer based on the LSTM neural network to establish a B-LSTM model considering spatio-temporal correlation features, and its powerful memory and feature extraction capabilities are used to extract deep features for distributed PV power interval prediction for intrinsic mode function components with different feature scales. An arithmetic example is analysed with an actual distributed PV dataset in a region to verify the superiority of the proposed method.

Key words: distributed photovoltaics, spatio-temporal correlation, interval prediction