中国电力 ›› 2024, Vol. 57 ›› Issue (7): 66-73.DOI: 10.11930/j.issn.1004-9649.202309026
收稿日期:
2023-09-06
出版日期:
2024-07-28
发布日期:
2024-07-23
作者简介:
韩嘉言(2003—),男,本科生,从事重力储能与控制技术,E-mail:jiayanhan@aliyun.com基金资助:
Jiayan HAN(), Yanling LÜ(
), Chong ZHOU(
)
Received:
2023-09-06
Online:
2024-07-28
Published:
2024-07-23
Supported by:
摘要:
重力储能是重要的储能方式之一,具有独特的短时暂态动力学特征,需要构建合理的系统结构和控制方法。提出了一种面向重力储能直流环节的多模式控制方法,从暂态能量控制角度,通过对重力储能系统的动力学分析和约束条件的划分,实现电池储能和重力储能的功率匹配。仿真验证表明,该控制方法能够在输入功率波动的情况下显著降低直流环节的电压抬升,合理分配重力储能系统内部的功率,提升重力储能系统的整体性能。
韩嘉言, 吕艳玲, 周冲. 重力储能直流环节电池多模式控制方法[J]. 中国电力, 2024, 57(7): 66-73.
Jiayan HAN, Yanling LÜ, Chong ZHOU. Multi-mode Control Method of Gravity Energy Storage DC Link Battery[J]. Electric Power, 2024, 57(7): 66-73.
参数 | 归一化标称值范围 | 标准值 | ||
输入功率 Pin/W | 0~1 | Pinnom | ||
重力储能功率 Ps/W | –1~1 | Pinnom | ||
电池输入的功率 PB/W | –1~1 | Pinnom | ||
母线电压值 VDC/V | 0~1 | VDCnom | ||
母线电压给定值 | >0 | VDCnom | ||
电机输出转矩 T/(kg·m) | 0~1 | Tmax | ||
重物转矩 TG/(kg·m) | 0.5 | Tmax |
表 1 系统参数
Table 1 System parameters
参数 | 归一化标称值范围 | 标准值 | ||
输入功率 Pin/W | 0~1 | Pinnom | ||
重力储能功率 Ps/W | –1~1 | Pinnom | ||
电池输入的功率 PB/W | –1~1 | Pinnom | ||
母线电压值 VDC/V | 0~1 | VDCnom | ||
母线电压给定值 | >0 | VDCnom | ||
电机输出转矩 T/(kg·m) | 0~1 | Tmax | ||
重物转矩 TG/(kg·m) | 0.5 | Tmax |
1 | 蒋棹骏, 向月, 谈竹奎, 等. 计及需求响应的高比例清洁能源园区储能容量优化配置[J]. 中国电力, 2023, 56 (12): 147- 155, 163. |
JIANG Zhaojun, XIANG Yue, TAN Zhukui, et al. Optimal allocation of energy storage capacity in high proportion clean energy parks considering demand response[J]. Electric Power, 2023, 56 (12): 147- 155, 163. | |
2 | 任大伟, 侯金鸣, 肖晋宇, 等. 支撑双碳目标的新型储能发展潜力及路径研究[J]. 中国电力, 2023, 56 (8): 17- 25. |
REN Dawei, HOU Jinming, XIAO Jinyu, et al. Research on development potential and path of new energy storage supporting carbon peak and carbon neutrality[J]. Electric Power, 2023, 56 (8): 17- 25. | |
3 | 谷晴, 李睿, 蔡旭, 等. 面向百兆瓦级应用的电池储能系统拓扑与控制方法[J]. 发电技术, 2022, 43 (5): 698- 706. |
GU Qing, LI Rui, CAI Xu, et al. Topology and control method of battery energy storage system for applicaiton at the scale of hundreds of meggawatts[J]. Power Generation Technology, 2022, 43 (5): 698- 706. | |
4 | 王粟, 肖立业, 唐文冰, 等. 新型重力储能研究综述[J]. 储能科学与技术, 2022, 11 (5): 1575- 1582. |
WANG Su, XIAO Liye, TANG Wenbing, et al. Review of new gravity energy storage[J]. Energy Storage Science and Technology, 2022, 11 (5): 1575- 1582. | |
5 |
O’GRADY C. Gravity powers batteries for renewable energy[J]. Science, 2021, 372 (6541): 446.
DOI |
6 | 秦婷婷, 周学志, 郭丁彰, 等. 铁轨重力储能系统效率影响因素研究[J]. 储能科学与技术, 2023, 12 (3): 835- 845. |
QIN Tingting, ZHOU Xuezhi, GUO Dingzhang, et al. Study on factors influencing rail gravity energy storage system efficiency[J]. Energy Storage Science and Technology, 2023, 12 (3): 835- 845. | |
7 | LUJANO-ROJAS J M, YUSTA J M, DOMÍNGUEZ-NAVARRO J A, et al. Combining genetic and gravitational search algorithms for the optimal management of battery energy storage systems in real-time pricing markets[C]//2020 IEEE Industry Applications Society Annual Meeting. Detroit, MI, USA. IEEE, 2020: 1–7. |
8 | SHAH D, VERMA J, KANNA R R, et al. Energy optimization for solar powered rural agro loads with elevated energy storage system[C]//2021 National Power Electronics Conference (NPEC). Bhubaneswar, India. IEEE, 2021: 1–6. |
9 |
WU X, LI N L, WANG X L, et al. Day-ahead scheduling of a gravity energy storage system considering the uncertainty[J]. IEEE Transactions on Sustainable Energy, 2021, 12 (2): 1020- 1031.
DOI |
10 | CHEN Y Y, HOU H, XU T, et al. A new gravity energy storage operation mode to accommodate renewable energy[C]//2019 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Macao, China. IEEE, 2019: 1–5. |
11 |
HAIDER S, SHAHMORADI-MOGHADAM H, SCHÖNBERGER J O, et al. Algorithm and optimization model for energy storage using vertically stacked blocks[J]. IEEE Access, 2020, 8, 217688- 217700.
DOI |
12 | 陈云良, 刘旻, 凡家异, 等. 重力储能发电现状、技术构想及关键问题[J]. 工程科学与技术, 2022, 54 (1): 97- 105. |
CHEN Yunliang, LIU Min, FAN Jiayi, et al. Present situation, technology conceptualization and key problem for gravity energy storage[J]. Advanced Engineering Sciences, 2022, 54 (1): 97- 105. | |
13 | 刘智洋, 宋杭选, 方宽, 等. 依托重力储能的高寒地区风-储联合发电系统容量优化[J]. 黑龙江电力, 2023, 45 (1): 30- 35. |
LIU Zhiyang, SONG Hangxuan, FANG Kuan, et al. Capacity optimization of wind-storage combined power generation system in alpine region based on gravity energy storage[J]. Heilongjiang Electric Power, 2023, 45 (1): 30- 35. | |
14 | AL-HILFI L M A, MORRIS S, JIANHUI W, et al. Exploration of the suitability of gravity energy storage in Malaysian grid systems[C]//2022 IEEE International Conference in Power Engineering Application (ICPEA). Shah Alam, Malaysia. IEEE, 2022: 1–6. |
15 | RUFER A. Design and control of a KE (kinetic energy) - compensated gravitational energy storage system[C]//2020 22nd European Conference on Power Electronics and Applications (EPE'20 ECCE Europe). Lyon, France. IEEE, 2020: 1–11. |
16 | PUNSIRICHAIYAKUL A, RATNIYOMCHAI T, KULWORAWANICHPONG T. Gravitational energy storage by using concrete stacks[C]//2020 International Conference on Power, Energy and Innovations (ICPEI). Chiangmai, Thailand. IEEE, 2020: 17–20. |
17 | SAGAR S, SONDHI S, SAGAR J. Gravity battery: storing electrical energy in the form of gravitational potential energy[C]//2020 IEEE International Conference on Computing, Power and Communication Technologies (GUCON). Greater Noida, India. IEEE, 2020: 182–188. |
18 | 马兰, 谢丽蓉, 叶林, 等. 基于混合储能双层规划模型的风电波动平抑策略[J]. 电网技术, 2022, 46 (3): 1016- 1026. |
MA Lan, XIE Lirong, YE Lin, et al. Wind power fluctuation suppression strategy based on hybrid energy storage Bi-level programming model[J]. Power System Technology, 2022, 46 (3): 1016- 1026. | |
19 | MOSHKIN V I, SHESTAKOV D N, UGAROV G G. Energy and dynamic efficiency of linear electromagnetic motors with one winding and with gravitational storage[C]//2019 International Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon). Vladivostok, Russia. IEEE, 2019: 1–4. |
20 | YUAN X L, YANG F, XU J Y, et al. Configuration Optimization of Wind-Solar-Storage System considering Demand Response[C]//2018 5th International Conference on Electric Power and Energy Conversion Systems (EPECS). Kitakyushu, Japan. IEEE, 2018: 1–6. |
21 |
朱永强, 郝嘉诚, 赵娜, 等. 能源互联网中的储能需求、储能的功能和作用方式[J]. 电工电能新技术, 2018, 37 (2): 68- 75.
DOI |
ZHU Yongqiang, HAO Jiacheng, ZHAO Na, et al. Demands, functions and action manners of energy storage in Energy Internet[J]. Advanced Technology of Electrical Engineering and Energy, 2018, 37 (2): 68- 75.
DOI |
|
22 | 侯慧, 徐焘, 肖振锋, 等. 基于重力储能的风光储联合发电系统容量规划与评价[J]. 电力系统保护与控制, 2021, 49 (17): 74- 84. |
HOU Hui, XU Tao, XIAO Zhenfeng, et al. Optimal capacity planning and evaluation of a wind-photovoltaic-storage hybrid power system based on gravity energy storage[J]. Power System Protection and Control, 2021, 49 (17): 74- 84. | |
23 | 郑丽君, 王子鹏, 吕世轩, 等. 基于荷电状态的直流微电网中多储能分级运行控制方法[J]. 电网技术, 2021, 45 (3): 1006- 1015. |
ZHENG Lijun, WANG Zipeng, LÜ Shixuan, et al. Hierarchical operation control of multi-energy storage in DC microgrid based on state of charge[J]. Power System Technology, 2021, 45 (3): 1006- 1015. |
[1] | 曾仪, 周毅, 陆继翔, 周良才, 唐宁恺, 李红. 基于多智能体安全深度强化学习的电压控制[J]. 中国电力, 2025, 58(2): 111-117. |
[2] | 张亚健, 陈茨, 薛飞, 马丽, 郑敏. 电制氢协同的含高比例光伏配电网两阶段电压随机优化控制[J]. 中国电力, 2024, 57(8): 23-35. |
[3] | 黄呈帅, 梁健, 李波, 杨亚欣, 胡杨, 姚尔人. 基于掺氢燃气轮机的综合能源系统热经济学性能研究[J]. 中国电力, 2024, 57(1): 195-208. |
[4] | 王晶, 袁懿, 邵尹池, 张晋奇, 丁然, 巩彦江. 考虑资源储备度的主动配电网多目标集群划分与电压控制方法[J]. 中国电力, 2023, 56(12): 69-79. |
[5] | 修晓青, 李相俊, 王佳蕊, 谢志佳, 吕项羽. 基于等效能折算的储能电站广义成本研究[J]. 中国电力, 2022, 55(4): 192-202. |
[6] | 杨亘烨, 孙荣富, 丁然, 徐海翔, 陈璨, 吴林林, 陈奇芳, 夏明超. 计及光伏多状态调节能力的配电网多时间尺度电压优化[J]. 中国电力, 2022, 55(3): 105-114. |
[7] | 郭小龙, 张江飞, 亢朋朋, 杨桂兴, 孙谊媊, 袁铁江, 刘勇. 含基于PI控制受端二次调频的特高压直流虚拟同步控制策略[J]. 中国电力, 2022, 55(11): 66-72. |
[8] | 刘海涛, 陈彪, 朱林, 芦翔, 祁升龙, 邹红波. 考虑多种无功补偿装置协同优化的电压控制方法[J]. 中国电力, 2022, 55(11): 97-102. |
[9] | 金子冉, 吴红斌, 周亦尧, 徐斌, 丁津津, 魏薇. 基于电压趋危系数的配电网多时间尺度自适应无功电压控制[J]. 中国电力, 2021, 54(11): 69-75. |
[10] | 付红军, 陈惠粉, 赵华, 王凯丰, 鲁宗相, 乔颖. 高渗透率下风电的调频技术研究综述[J]. 中国电力, 2021, 54(1): 104-115. |
[11] | 李妍, 王展, 黄迅, 张慧媛, 何大瑞. 计及光储荷特性的直流微网低压穿越控制策略[J]. 中国电力, 2019, 52(7): 47-54. |
[12] | 姚翔宇, 江栋, 邵显清, 张杰. 移动救援充电车充电系统设计[J]. 中国电力, 2018, 51(5): 80-86,117. |
[13] | 王金丽, 马钊, 潘旭, 王利. 配电变压器有载调压技术[J]. 中国电力, 2018, 51(5): 75-79,100. |
[14] | 毋炳鑫, 谢卫华, 叶红恩. 交直流混合微电网直流母线电压稳定控制技术[J]. 中国电力, 2017, 50(1): 62-66. |
[15] | 张师, 周毅博, 李卫国, 赵祥. 电压控制的DFIG对风火打捆系统暂态稳定性的影响[J]. 中国电力, 2016, 49(7): 51-53. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||