[1] 韩肖清, 李廷钧, 张东霞, 等. 双碳目标下的新型电力系统规划新问题及关键技术[J]. 高电压技术, 2021, 47(9): 3036–3046 HAN Xiaoqing, LI Tingjun, ZHANG Dongxia, et al. New issues and key technologies of new power system planning under double carbon goals[J]. High Voltage Engineering, 2021, 47(9): 3036–3046 [2] 武昭原, 周明, 王剑晓, 等. 双碳目标下提升电力系统灵活性的市场机制综述[J]. 中国电机工程学报, 2022, 42(21): 7746–7763 WU Zhaoyuan, ZHOU Ming, WANG Jianxiao, et al. Review on market mechanism to enhance the flexibility of power system under the dual-carbon target[J]. Proceedings of the CSEE, 2022, 42(21): 7746–7763 [3] 吴珊, 边晓燕, 张菁娴, 等. 面向新型电力系统灵活性提升的国内外辅助服务市场研究综述[J]. 电工技术学报, 2023, 38(6): 1662–1677 WU Shan, BIAN Xiaoyan, ZHANG Jingxian, et al. A review of domestic and foreign ancillary services market for improving flexibility of new power system[J]. Transactions of China Electrotechnical Society, 2023, 38(6): 1662–1677 [4] 齐宁, 程林, 田立亭, 等. 考虑柔性负荷接入的配电网规划研究综述与展望[J]. 电力系统自动化, 2020, 44(10): 193–207 QI Ning, CHENG Lin, TIAN Liting, et al. Review and prospect of distribution network planning research considering access of flexible load[J]. Automation of Electric Power Systems, 2020, 44(10): 193–207 [5] 文旭, 杨可, 毛锐, 等. 可调节负荷调控能力评估行业标准研究及应用[J]. 电网技术, 2021, 45(11): 4585–4593 WEN Xu, YANG Ke, MAO Rui, et al. Research and application of industry standards for evaluation of adjustable load control capacity[J]. Power System Technology, 2021, 45(11): 4585–4593 [6] 谈竹奎, 曾鸣. 基于负荷调节能力模型的实时需求响应理论[J]. 南方电网技术, 2022, 16(1): 58–66 TAN Zhukui, ZENG Ming. Real-time demand response theory based on load regulation capability model[J]. Southern Power System Technology, 2022, 16(1): 58–66 [7] 黄亚峰, 朱玉杰, 穆钢, 等. 基于温度预报的户用电采暖负荷可调节能力评估[J]. 电网技术, 2018, 42(8): 2487–2493 HUANG Yafeng, ZHU Yujie, MU Gang, et al. Evaluation of adjustable capacity of household electrical heating load based on temperature forecast[J]. Power System Technology, 2018, 42(8): 2487–2493 [8] 刘永梅, 王金丽, 杨红磊, 等. 计及柔性负荷调节能力的有源配电网动态优化方法[J]. 高电压技术, 2021, 47(1): 73–80 LIU Yongmei, WANG Jinli, YANG Honglei, et al. Dynamic optimal method of distribution network in consideration of flexible load adjustment capability[J]. High Voltage Engineering, 2021, 47(1): 73–80 [9] ALIZADEH M, SCAGLIONE A, APPLEBAUM A, et al. Reduced-order load models for large populations of flexible appliances[J]. IEEE Transactions on Power Systems, 2015, 30(4): 1758–1774. [10] TULABING R S, MITCHELL B C, COVIC G A, et al. Localized demand control of flexible devices for peak load management[J]. IEEE Transactions on Smart Grid, 2022, 14(1): 217–227. [11] PAPADASKALOPOULOS D, STRBAC G. Nonlinear and randomized pricing for distributed management of flexible loads[J]. IEEE Transactions on Smart Grid, 2016, 7(2): 1137–1146. [12] 刘春阳, 李康平, 纪陵, 等. 基于聚类-估计联动的需求响应集群基线负荷估计方法[J]. 电力系统自动化, 2023, 47(2): 79–87 LIU Chunyang, LI Kangping, JI Ling, et al. Clustering-estimation linkage based estimation method for aggregated baseline loads of demand response[J]. Automation of Electric Power Systems, 2023, 47(2): 79–87 [13] 孙毅, 毛烨华, 李泽坤, 等. 面向电力大数据的用户负荷特性和可调节潜力综合聚类方法[J]. 中国电机工程学报, 2021, 41(18): 6259–6270 SUN Yi, MAO Yehua, LI Zekun, et al. A comprehensive clustering method of user load characteristics and adjustable potential based on power big data[J]. Proceedings of the CSEE, 2021, 41(18): 6259–6270 [14] 王利利, 王皓, 任洲洋, 等. 计及灵活资源调节潜力的高压配电网新能源接纳能力评估[J]. 中国电力, 2022, 55(10): 124–131 WANG Lili, WANG Hao, REN Zhouyang, et al. Evaluation of renewable energy accommodation capacity of high voltage distribution networks considering regulation potential of flexible resources[J]. Electric Power, 2022, 55(10): 124–131 [15] 陈忠华, 陈致远, 王梦涵, 等. 考虑电动汽车接入的配电网灵活性评估方法[J]. 现代电力, 2022, 39(6): 702–709 CHEN Zhonghua, CHEN Zhiyuan, WANG Menghan, et al. A method to evaluate flexibility of distribution network considering grid-connection of electric vehicles[J]. Modern Electric Power, 2022, 39(6): 702–709 [16] JAMBORSALAMATI P, HOSSAIN M J, TAGHIZADEH S, et al. Enhancing power grid resilience through an IEC61850-based EV-assisted load restoration[J]. IEEE Transactions on Industrial Informatics, 2020, 16(3): 1799–1810. [17] LIU H, ZHAO Y, GE S Y, et al. Reliability evaluation of regional energy Internet considering electricity–gas coupling and coordination between energy stations[J]. IET Energy Systems Integration, 2021, 3(3): 238–249. [18] 沈思辰, 韩海腾, 周亦洲, 等. 基于条件风险价值的多虚拟电厂电-碳-备用P2P交易模型[J]. 电力系统自动化, 2022, 46(18): 147–157 SHEN Sichen, HAN Haiteng, ZHOU Yizhou, et al. Electricity-carbon-reserve peer-to-peer trading model for multiple virtual power plants based on conditional value-at-risk[J]. Automation of Electric Power Systems, 2022, 46(18): 147–157 [19] CAO Y, WEI W, MEI S W, et al. Analyzing and quantifying the intrinsic distributional robustness of CVaR reformulation for chance-constrained stochastic programs[J]. IEEE Transactions on Power Systems, 2020, 35(6): 4908–4911. [20] SABER H, HEIDARABADI H, MOEINI-AGHTAIE M, et al. Expansion planning studies of independent-locally operated battery energy storage systems (BESSs): a CVaR-based study[J]. IEEE Transactions on Sustainable Energy, 2020, 11(4): 2109–2118. [21] ASENSIO M, CONTRERAS J. Stochastic unit commitment in isolated systems with renewable penetration under CVaR assessment[J]. IEEE Transactions on Smart Grid, 2016, 7(3): 1356–1367. [22] 聂世豪, 李桐, 陈磊, 等. 投切型温控负荷一次调频策略及电网侧聚合建模[J]. 中国电机工程学报, 2022, 42(增刊1): 1–11 NIE Shihao, LI Tong, CHEN Lei, et al. Primary frequency control strategy of switching thermostatically controlled load and modeling of aggregated model[J]. Proceedings of the CSEE, 2022, 42(S1): 1–11 [23] 张宇轩, 郭力, 刘一欣, 等. 电动汽车充电负荷概率分布的数值建模方法[J]. 电力系统自动化, 2021, 45(18): 61–70 ZHANG Yuxuan, GUO Li, LIU Yixin, et al. Numerical modeling method for probability distribution of electric vehicle charging load[J]. Automation of Electric Power Systems, 2021, 45(18): 61–70 [24] 宋雨浓, 林舜江, 唐智强, 等. 基于动态车流的电动汽车充电负荷时空分布概率建模[J]. 电力系统自动化, 2020, 44(23): 47–56 SONG Yunong, LIN Shunjiang, TANG Zhiqiang, et al. Spatial-temporal distribution probabilistic modeling of electric vehicle charging load based on dynamic traffic flow[J]. Automation of Electric Power Systems, 2020, 44(23): 47–56 [25] KOROLKO N, SAHINOGLU Z, NIKOVSKI D. Modeling and forecasting self-similar power load due to EV fast chargers[J]. IEEE Transactions on Smart Grid, 2016, 7(3): 1620–1629.
|