中国电力 ›› 2025, Vol. 58 ›› Issue (3): 86-97.DOI: 10.11930/j.issn.1004-9649.202402070

• 新型电网 • 上一篇    下一篇

计及电动汽车和温控负荷集群的负荷控制用户组合优化方法

李思维1,2(), 许中平2(), 于龙2, 杜立石2, 岳靓2, 张喜润2(), 王小明3   

  1. 1. 智能电网教育部重点实验室(天津大学),天津 300072
    2. 北京中电飞华通信有限公司,北京 100071
    3. 国网安徽省电力有限公司电力科学研究院,安徽 合肥 230061
  • 收稿日期:2024-02-28 出版日期:2025-03-28 发布日期:2025-03-26
  • 作者简介:
    李思维(1988),男,高级工程师,从事电力系统需求响应和优化运行与控制研究,E-mail:lisiwei@sgitg.sgcc.com.cn
    许中平(1973),男,高级工程师,从事电力系统信息通信技术研究,E-mail:xuzhongping@sgitg.sgcc.com.cn
    张喜润(1981),男,通信作者,中级工程师,从事电力信息通信和电力负荷管理及优化调控研究,E-mail:xirunzhang@163.com
  • 基金资助:
    国家电网有限公司科技项目(面向多主体参与的负荷管理云关键技术及运行机制研究,5400-202320223A-1-1-ZN)。

A Load Control User Combinatorial Optimization Method Considering Electric Vehicle and Temperature-Controlled Load Clusters

Siwei LI1,2(), Zhongping XU2(), Long YU2, Lishi DU2, Liang YUE2, Xirun ZHANG2(), Xiaoming WANG3   

  1. 1. Key Laboratory of Smart Grid of Ministry of Education (Tianjin University), Tianjin 300072, China
    2. Beijing Fibrlink Communications Co., Ltd., Beijing 100071, China
    3. Electric Power Research Institute of State Grid Anhui Electric Power Company, Hefei 230061, China
  • Received:2024-02-28 Online:2025-03-28 Published:2025-03-26
  • Supported by:
    This work is supported by Science and Technology Project of SGCC (Research on Key Technology and Operation Mechanism of Load Management Cloud for Multi-agent Participation, No.5400-202320223A-1-1-ZN).

摘要:

随着新型电力系统建设不断深入,电力系统面临峰谷差大、波动性强的问题,利用用户侧资源参与负荷控制是解决该问题的重要举措之一。提出一种计及电动汽车和温控负荷集群的负荷控制用户组合优化方法。首先,采用分级控制的方式聚合各单体电动汽车与温控负荷集群,并根据其参与负荷控制类型的意愿分为错峰和避峰2类,分别建立错峰和避峰用户负荷调节量模型。其次,针对避峰用户参与负荷控制后出现的负荷反弹现象,构建三阶段反弹负荷模型;在此基础上考虑用户参与负荷控制的影响程度,建立负荷控制影响函数。最后,以负荷控制影响最小、电网损失最小以及负荷波动最小为多目标,优化参与错峰和避峰的用户构成以及用户负荷调节量,在满足负荷控制调控需求的同时,有效抑制参与控制后负荷反弹造成的新负荷高峰,实现分散式负荷资源与电网的良好供需互动。

关键词: 分散式负荷资源, 温控负荷集群, 负荷反弹, 负荷控制, 组合优化

Abstract:

As the construction of the new power system continues to deepen, the power system faces such problems as large peak-to-valley difference and high volatility, and the use of user-side resources to participate in load control is one of the important initiatives to solve the above-said problems. In this paper, a load control user combinatorial optimization method considering electric vehicle (EV) and temperature-controlled load clusters is proposed. Firstly, a hierarchical control method is used to aggregate individual EVs and temperature-controlled load clusters, and the aggregated clusters are divided into peak load shifting type and peak load shedding type according to their willingness to participate in load control types, and their respective user load control models are established. Secondly, a three-stage rebound load model is constructed to solve the load rebound problem after peak load shifting users participate in load control. And then, a load control influence function is established with consideration of the influence degree of users participating in load control. Finally, the composition of user groups participating in peak load shifting and shedding and the adjustment amount of user load are optimized with the minimum load control influence, minimum network loss and minimum load fluctuation as multi-objectives. While meeting the demand of load control, the proposed method can effectively inhibit the new peak load caused by the rebound of load after users participating in load control, as a result, realizing the good interaction of supply and demand between distributed load resources and the power system.

Key words: distributed load resources, temperature control load cluster, load rebound, load control, combinatorial optimization