[1] 刘瑾, 冯瑛敏, 章辉, 等. 基于熵值分析和层次分析法的智能电网电力终端接入网综合效益评价[J]. 电力建设, 2015, 36(5): 136–140 LIU Jin, FENG Yingmin, ZHANG Hui, et al. Comprehensive benefit evaluation for power terminal access network in smart grid based on analytic hierarchy process and entropy analysis[J]. Electric Power Construction, 2015, 36(5): 136–140 [2] 张正, 朱志成. 基于模糊层次分析的电力终端通信接入网综合评价[J]. 科技展望, 2017, 27(4): 1–2 [3] 周成, 李映雪, 黄超, 等. 基于模糊权重的10 kV终端通信方式决策算法研究[J]. 江西电力, 2018, 42(6): 6–8 [4] 刘瑾, 冯瑛敏, 黄丽妍, 等. 电力终端通信接入网建设和运行成本分析[J]. 电力与能源进展, 2017, 5(2): 34–38 LIU Jin, FENG Yingmin, HUANG Liyan, et al. Construction and operating cost analysis of grid terminal communication access networks[J]. Advances in Energy and Power Engineering., 2017, 5(2): 34–38 [5] 李映雪, 陆俊, 徐志强, 等. 多技术融合的智能配用电终端通信接入架构设计[J]. 电力系统自动化, 2018, 42(10): 163–169 LI Yingxue, LU Jun, XU Zhiqiang, et al. Design of terminal communication access architecture for smart power distribution and utilization based on integration of multiple technologies[J]. Automation of Electric Power Systems, 2018, 42(10): 163–169 [6] 陈永红, 李建岐, 白杰, 等. 终端通信接入网建设和运行模式探讨[J]. 供用电, 2018, 35(3): 32–36 CHEN Yonghong, LI Jianqi, BAI Jie, et al. Study on construction and operation model of terminal communication access network[J]. Distribution & Utilization, 2018, 35(3): 32–36 [7] 胡倩倩, 赵宏昊, 杜春潮, 等. 典型应用场景的配电通信网络适应性研究[J]. 中国电力, 2016, 49(12): 121–126,132 HU Qianqian, ZHAO Honghao, DU Chunchao, et al. Research on adaptability of distribution communication network in typical application scenarios[J]. Electric Power, 2016, 49(12): 121–126,132 [8] 郭放. 计及指标关联度的配电通信网规划多维评价模型[J]. 中国电力, 2016, 49(8): 126–129,139 GUO Fang. Multi-dimensional evaluation model for distribution communication network planning by considering index relationship[J]. Electric Power, 2016, 49(8): 126–129,139 [9] 王利利, 张琳娟, 许长清, 等. 能源互联网背景下园区用户画像及成熟度评价模型研究[J]. 中国电力, 2020, 53(8): 19–28 WANG Lili, ZHANG Linjuan, XU Changqing, et al. Research on park users portrait and maturity evaluation model under the background of energy Internet[J]. Electric Power, 2020, 53(8): 19–28 [10] 张吉军. 模糊层次分析法(FAHP)[J]. 模糊系统与数学, 2000, 14(2): 80–88 ZHANG Jijun. Fuzzy analytical hierarchy process[J]. Fuzzy Systems and Mathematics, 2000, 14(2): 80–88 [11] 国家能源局. 配电网规划设计技术导则:DL/T 5729—2016[S]. 北京: 中国电力出版社, 2016. [12] 王伟贤, 孙舟, 潘鸣宇, 等. 基于模糊层次分析法的电动汽车充电桩信息安全风险评估方法[J]. 中国电力, 2021, 54(1): 96–103 WANG Weixian, SUN Zhou, PAN Mingyu, et al. Information security risk assessment method for electric vehicle charging piles based on fuzzy analytic hierarchy process[J]. Electric Power, 2021, 54(1): 96–103 [13] 蔡子龙, 王品, 宋建, 等. 电动汽车公共应急充电站选址规划模型[J]. 电力系统保护与控制, 2020, 48(16): 62–68 CAI Zilong, WANG Pin, SONG Jian, et al. Location planning model of public emergency charging stations for electric vehicles[J]. Power System Protection and Control, 2020, 48(16): 62–68 [14] 韩学森, 刘博文, 李永杰, 等. 基于模糊和灰色关联的配电自动化开关柜故障诊断方法[J]. 电力科学与技术学报, 2021, 36(2): 107–115 HAN Xuesen, LIU Bowen, LI Yongjie, et al. A fault diagnosis method for distribution automation switch cabinet based on fuzzy and gray correlation[J]. Journal of Electric Power Science and Technology, 2021, 36(2): 107–115 [15] 李典阳, 张育杰, 王善渊, 等. 基于多预测模型融合的电力变压器安全预判[J]. 中国电力, 2020, 53(1): 72–80 LI Dianyang, ZHANG Yujie, WANG Shanyuan, et al. Safety prejudging method for power transformer based on multi-prediction model fusion[J]. Electric Power, 2020, 53(1): 72–80 [16] 饶雪, 王一波, 祝骏威, 等. 基于运营监测的电力企业对标研究[J]. 企业改革与管理, 2020(2): 8–9 [17] 尹惠, 符金伟, 史常凯, 等. 配电终端全过程质量综合评估体系与方法[J]. 电力信息与通信技术, 2020, 18(2): 9–13 YIN Hui, FU Jinwei, SHI Changkai, et al. Full process quality comprehensive evaluation system and method of distribution automation terminals[J]. Electric Power Information and Communication Technology, 2020, 18(2): 9–13 [18] CHANG Y, ZHU Y, ZHENG N K. Research on evaluation of science and technology innovation index of power grid enterprises based on analytic hierarchy process[M]//Application of Intelligent Systems in Multi-modal Information Analytics. Cham: Springer International Publishing, 2019: 474–482. [19] ZHANG P C, ZHOU S Y, WANG K, et al. Risk assessment of electricity retailers based on improved analytic hierarchy process with trapezoidal fuzzy[C]//2019 IEEE 8th Joint International Information Technology and Artificial Intelligence Conference (ITAIC). Chongqing, China. IEEE, 2019: 1196–1204. [20] 吕顺利, 杨济海, 邓伟, 等. Apriori-AHP算法在电力通信网业务风险评估中的研究及应用[J]. 计算机与数字工程, 2018, 46(4): 667–671,681 LV Shunli, YANG Jihai, DENG Wei, et al. Research and application of business risk assessment of electric power communication network based on apriori-AHP analysis[J]. Computer & Digital Engineering, 2018, 46(4): 667–671,681 [21] 郑庆荣, 邱慰祥, 汤卓凡. 上海市用电负荷管理系统230MHz电力无线专网与数传电台错时共址方案研究[J]. 信息通信技术, 2019, 13(4): 70–75 ZHENG Qingrong, QIU Weixiang, TANG Zhuofan. Research on 230MHz power wireless private network and digital transmission station time-sharing co-location scheme for Shanghai power load management system[J]. Information and Communications Technologies, 2019, 13(4): 70–75 [22] 梁昕, 王泽朗, 谢宇宸. 项目成本管理在电力通信项目中的应用研究[J]. 通讯世界, 2016(4): 155–156 [23] 肖辅盛, 高适, 邓超志, 等. 一种基于检修风险收益的输变电设备检修优先级排序方法[J]. 电力系统保护与控制, 2017, 45(22): 110–116 XIAO Fusheng, GAO Shi, DENG Chaozhi, et al. Maintenance prioritization method of transmission and transformation equipment based on maintenance risk return[J]. Power System Protection and Control, 2017, 45(22): 110–116 [24] 刘林, 祁兵, 李彬, 等. 面向电力物联网新业务的电力通信网需求及发展趋势[J]. 电网技术, 2020, 44(8): 3114–3130 LIU Lin, QI Bing, LI Bin, et al. Requirements and developing trends of electric power communication network for new services in electric Internet of Things[J]. Power System Technology, 2020, 44(8): 3114–3130 [25] 闫龙, 王剑锋, 李霜冰, 等. 配用电业务统一承载网络关键技术及实现方案[J]. 电力信息与通信技术, 2016, 14(10): 56–62 YAN Long, WANG Jianfeng, LI Shuangbing, et al. Key technologies and implementation scheme of power distribution and utilization services unified bearing network[J]. Electric Power Information and Communication Technology, 2016, 14(10): 56–62 [26] 陈飞, 冯昊, 徐晨博, 等. 电力系统演进的内在驱动因素及发展路径探索[J]. 电力建设, 2019, 40(3): 59–66 CHEN Fei, FENG Hao, XU Chenbo, et al. Investigationon of internal driving factors and development path in power system evolution[J]. Electric Power Construction, 2019, 40(3): 59–66
|