[1] 王鑫, 王海云, 王维庆. 大规模海上风电场电力输送方式研究[J]. 电测与仪表, 2020, 57(22): 55–62 WANG Xin, WANG Haiyun, WANG Weiqing. Research on power transmission mode of large-scale offshore wind farms[J]. Electrical Measurement & Instrumentation, 2020, 57(22): 55–62 [2] 蔡旭, 陈根, 周党生, 等. 海上风电变流器研究现状与展望[J]. 全球能源互联网, 2019, 2(2): 102–115 CAI Xu, CHEN Gen, ZHOU Dangsheng, et al. Review and prospect on key technologies for offshore wind power converters[J]. Journal of Global Energy Interconnection, 2019, 2(2): 102–115 [3] 王锡凡, 卫晓辉, 宁联辉, 等. 海上风电并网与输送方案比较[J]. 中国电机工程学报, 2014, 34(31): 5459–5466 WANG Xifan, WEI Xiaohui, NING Lianhui, et al. Integration techniques and transmission schemes for off-shore wind farms[J]. Proceedings of the CSEE, 2014, 34(31): 5459–5466 [4] 迟永宁, 梁伟, 张占奎, 等. 大规模海上风电输电与并网关键技术研究综述[J]. 中国电机工程学报, 2016, 36(14): 3758–3771 CHI Yongning, LIANG Wei, ZHANG Zhankui, et al. An overview on key technologies regarding power transmission and grid integration of large scale offshore wind power[J]. Proceedings of the CSEE, 2016, 36(14): 3758–3771 [5] 王秀丽, 赵勃扬, 黄明煌, 等. 大规模深远海风电送出方式比较及集成设计关键技术研究[J]. 全球能源互联网, 2019, 2(2): 138–145 WANG Xiuli, ZHAO Boyang, HUANG Minghuang, et al. Research of integration methods comparison and key design technologies for large scale long distance offshore wind power[J]. Journal of Global Energy Interconnection, 2019, 2(2): 138–145 [6] 李翔宇, Gayan Abeynayake, 姚良忠, 等. 欧洲海上风电发展现状及前景[J]. 全球能源互联网, 2019, 2(2): 116–126 LI Xiangyu, ABEYNAYAKE G, YAO Liangzhong, et al. Recent development and prospect of offshore wind power in Europe[J]. Journal of Global Energy Interconnection, 2019, 2(2): 116–126 [7] 蔡旭, 施刚, 迟永宁, 等. 海上全直流型风电场的研究现状与未来发展[J]. 中国电机工程学报, 2016, 36(8): 2036–2048 CAI Xu, SHI Gang, CHI Yongning, et al. Present status and future development of offshore all-DC wind farm[J]. Proceedings of the CSEE, 2016, 36(8): 2036–2048 [8] 赵大伟, 马进, 钱敏慧, 等. 海上风电场经交流电缆送出系统的无功配置与协调控制策略[J]. 电网技术, 2017, 41(5): 1412–1421 ZHAO Dawei, MA Jin, QIAN Minhui, et al. Reactive power configuration and coordinated control of offshore wind farms connected to power grid with AC cables[J]. Power System Technology, 2017, 41(5): 1412–1421 [9] 查国强, 袁越, 傅质馨, 等. 考虑海底电缆充电功率的风电场无功补偿[J]. 电网与清洁能源, 2013, 29(2): 54–60 ZHA Guoqiang, YUAN Yue, FU Zhixin, et al. Reactive compensation of offshore wind farm considering charging power of the submarine cable[J]. Power System and Clean Energy, 2013, 29(2): 54–60 [10] 熊信恒, 陈柏超, 袁佳歆. 考虑海底电缆的海上风电场动态感性无功补偿[J]. 武汉大学学报(工学版), 2016, 49(4): 591–596,602 XIONG Xinheng, CHEN Baichao, YUAN Jiaxin. Dynamic inductive reactive power compensation of offshore wind farms considering submarine cable[J]. Engineering Journal of Wuhan University, 2016, 49(4): 591–596,602 [11] 陈柏超, 罗璇瑶, 袁佳歆, 等. 考虑工频过电压的海上风电场无功配置方案研究[J]. 电测与仪表, 2018, 55(13): 78–83 CHEN Baichao, LUO Xuanyao, YUAN Jiaxin, et al. Reactive power allocation scheme for offshore wind farm considering power frequency overvoltage[J]. Electrical Measurement & Instrumentation, 2018, 55(13): 78–83 [12] 仇卫东, 胡君慧, 李琰. 大型海上风电场并网过电压问题及抑制措施研究[J]. 分布式能源, 2016, 1(3): 23–28 QIU Weidong, HU Junhui, LI Yan. Grid access overvoltage and restrain measures for large-scale offshore wind farm[J]. Distributed Energy, 2016, 1(3): 23–28 [13] 郭亚勋, 刘刚, 梁嘉浩, 等. 海上风电场电缆集电网不对称短路暂态过电压仿真分析[J]. 高压电器, 2018, 54(5): 204–209,216 GUO Yaxun, LIU Gang, LIANG Jiahao, et al. Simulation analysis on transient overvoltage of asymmetric short circuit in cable collector networks of offshore wind farm[J]. High Voltage Apparatus, 2018, 54(5): 204–209,216 [14] 黄辉, 郑明, 蓝锦标, 等. 海上风电场海底高压电缆电磁暂态过程的仿真分析[J]. 电网与清洁能源, 2012, 28(11): 72–76,81 HUANG Hui, ZHENG Ming, LAN Jinbiao, et al. Simulation analysis of the electro-magnetic transient on high voltage submarine cable of the offshore wind farms[J]. Power System and Clean Energy, 2012, 28(11): 72–76,81 [15] 刘学忠, 王贤宗, Li Yishan, 等. 风电场电缆集电网操作过电压的模拟试验和暂态分析[J]. 高电压技术, 2014, 40(1): 61–66 LIU Xuezhong, WANG Xianzong, LI Yishan, et al. Simulating experiment and transient analysis on switching surges in cable collection grid of wind power plant[J]. High Voltage Engineering, 2014, 40(1): 61–66 [16] 杨硕, 王伟胜, 刘纯, 等. 改善风电汇集系统静态电压稳定性的无功电压协调控制策略[J]. 电网技术, 2014, 38(5): 1250–1256 YANG Shuo, WANG Weisheng, LIU Chun, et al. Coordinative strategy of reactive power and voltage control for improving static voltage stability of wind power centralized system[J]. Power System Technology, 2014, 38(5): 1250–1256 [17] 郑黎明, 贾科, 毕天姝, 等. 海上风电接入柔直系统交流侧故障特征及对保护的影响分析[J]. 电力系统保护与控制, 2021, 49(20): 20–32 ZHENG Liming, JIA Ke,BI Tianshu, et al. AC-side fault analysis of a VSC-HVDC transmission system connected to offshore wind farms and the impact on protection[J]. Power System Protection and Control, 2021, 49(20): 20–32 [18] 余浩, 肖彭瑶, 林勇, 等. 大规模海上风电高电压穿越研究进展与展望[J]. 智慧电力, 2020, 48(3): 30–38 YU Hao, XIAO Pengyao, LIN Yong, et al. Review on high voltage ride-through strategies for Offshore doubly-fed wind farms[J]. Smart Power, 2020, 48(3): 30–38 [19] 王红星, 郭敬梅, 谢志文, 等. 海上风电次/超同步振荡的网侧附加阻尼抑制方法[J]. 南方电网技术, 2021, 15(11): 49–55 WANG Hongxing, GUO Jingmei, XIE Zhiwen, et al. Grid-side supplementary damping suppression method of sub-& super-synchronous oscillation in offshore wind farms[J]. Southern Power System Technology, 2021, 15(11): 49–55 [20] GIRALDO E, GARCES A. An adaptive control strategy for a wind energy conversion system based on PWM-CSC and PMSG[J]. IEEE Transactions on Power Systems, 2014, 29(3): 1446–1453. [21] PERDANA A, CARLSON O. Factors influencing design of dynamic reactive power compensation for an offshore wind farm[J]. Wind Engineering, 2009, 33(3): 273–285. [22] EL-SHIMY M. Reactive power management and control of distant large-scale grid-connected offshore wind power farms[J]. International Journal of Sustainable Energy, 2013, 32(5): 449–465. [23] EL-SHIMY M. Modeling and analysis of reactive power in grid-connected onshore and offshore DFIG-based wind farms[J]. Wind Energy, 2014, 17(2): 279–295. [24] KAMALAKANNAN C, SURESH L P, DASH S S, et al. Power electronics and renewable energy systems[M]. New Delhi: Springer India, 2015.
|