中国电力 ›› 2025, Vol. 58 ›› Issue (8): 156-163.DOI: 10.11930/j.issn.1004-9649.202410010

• 新型电网 • 上一篇    下一篇

基于模型驱动的电力系统安全稳定分析与控制策略

张鼎衢1(), 钱斌2,3(), 杨路1(), 陈峰1(), 罗奕2,3()   

  1. 1. 广东电网有限责任公司计量中心,广东 清远 511545
    2. 南方电网科学研究院有限责任公司,广东 广州 510663
    3. 广东省电网智能量测与先进计量重点实验室,广东 广州 510663
  • 收稿日期:2024-10-08 发布日期:2025-08-26 出版日期:2025-08-28
  • 作者简介:
    张鼎衢(1987),男,硕士,高级工程师,从事电能计量装置运行管理与技术应用研究,E-mail:13822289520@139.com
    钱斌(1989),男,硕士,高级工程师,从事电能计量技术研究,E-mail:qianbin@csg.cn
    杨路(1991),男,硕士,工程师,从事电能计量新技术研究,E-mail:yanglu910715@126.com
    陈峰(1994),男,硕士,工程师,从事电能计量装置运行管理与技术应用研究,E-mail:15815538083@163.com
    罗奕(1991),男,博士,高级工程师,从事电能计量、互感器、高级量测技术等研究工作,E-mail:luoyi_csg@outlook.com
  • 基金资助:
    中国南方电网有限责任公司科技项目(GDKJXM20220280)。

Data Driven Analysis and Control of Power System Security and Stability

ZHANG Dingqu1(), QIAN Bin2,3(), YANG Lu1(), CHEN Feng1(), LUO Yi2,3()   

  1. 1. Metrology Center of Guangdong Power Grid Co., Ltd., Qingyuan 510080, China
    2. Electric Power Research Institute, CSG, Guangzhou 510663, China
    3. Guangdong Provincial Key Laboratory of Intelligent Measurement and Advanced Metering of Power Grid, Guangzhou 510663, China
  • Received:2024-10-08 Online:2025-08-26 Published:2025-08-28
  • Supported by:
    This work is supported by Science and Technology Project of China Southern Power Grid Co., Ltd. (No.GDKJXM20220280).

摘要:

为实现对暂态过电压的精确控制,及时且有效地应对电压的急剧变化,提出了一种高比例光伏发电并网情况下的基于模型驱动的电力系统安全稳定分析与控制策略。该策略针对高比例光伏并网系统的电压波动等关键电气指标,构建了基于径向基函数-粒子群优化(radial basis function-particle swarm optimization,RBF-PSO)的神经网络模型。基于实时采集的数据,所提模型能够预测电网的暂态行为,一旦预测结果显示可能存在暂态过电压风险,系统将根据预设的优先级设定待控制节点,并结合光伏接入点的灵敏度分析调节光伏逆变器的无功补偿与有功输出,自动激活预设的暂态过电压控制机制,以迅速恢复系统电压稳定,保障设备安全。实验验证显示,该方法不仅响应速度快,还能显著减少光伏逆变器所需的无功功率。

关键词: 光伏电站, 峰值电压, 暂态过电压控制

Abstract:

In order to control the transient over-voltage accurately and deal with the sharp change of voltage in time and effectively, this paper proposes a data-driven power system security and stability analysis and control strategy under the condition of high proportion of photovoltaic power generation connected to the grid. This strategy involves continuous monitoring of key electrical indicators such as voltage fluctuations in the high-penetration PV grid-connected system, upon which a neural network model based on Radial Basis Function-Particle Swarm Optimization (RBF-PSO) is constructed. Using real-time data, the model can predict the transient behavior of the power grid. Once the prediction indicates a risk of transient over-voltage, the system immediately sets the nodes to be controlled according to preset priorities and, in combination with sensitivity analysis at PV connection points, automatically activates the preset transient over-voltage control mechanism by adjusting the reactive power compensation and active power reduction functions of the PV inverters. This aims to swiftly restore system voltage stability and ensure equipment safety. Experimental verification shows that this method not only responds rapidly but also significantly reduces the reactive power required by PV inverters.

Key words: photovoltaic power station, peak voltage, transient overvoltage control


AI


AI小编
您好!我是《中国电力》AI小编,有什么可以帮您的吗?