中国电力 ›› 2021, Vol. 54 ›› Issue (5): 101-110.DOI: 10.11930/j.issn.1004-9649.202004133

• 电网 • 上一篇    下一篇

计及频率稳定的多直流异步外送电网切机容量优化

苟竞1, 刘方1, 况理2, 苏韵掣1, 李奥1, 文云峰2   

  1. 1. 国网四川省电力公司经济技术研究院,四川 成都 610041;
    2. 湖南大学 电气与信息工程学院,湖南 长沙 410082
  • 收稿日期:2020-04-17 修回日期:2020-08-14 发布日期:2021-05-05
  • 作者简介:苟竞(1988-),男,博士,高级工程师,从事电力系统规划和新能源并网设计工作,E-mail:scu_goujing@163.com;况理(1996-),男,硕士研究生,从事低惯量电力系统优化调度与运行研究,E-mail:likuang12138@qq.com;文云峰(1986-),男,通信作者,博士,副教授,从事低惯性电力系统规划、运行与控制研究,E-mail:yunfeng.8681@163.com
  • 基金资助:
    国家自然科学基金资助项目(51707017);国家电网有限公司科技项目(面向纯清洁能源电力系统构建的四川电网发展形态与规划关键技术研究,SGSCJY00GHJS1900010)

Generation Shedding Capacity Optimization of Sending-End Power Grids with Multi-DC Asynchronous Outfeeds Considering Frequency Stability

GOU Jing1, LIU Fang1, KUANG Li2, SU Yunche1, LI Ao1, WEN Yunfeng2   

  1. 1. State Grid Sichuan Power Economic Research Institute, Chengdu 610041, China;
    2. School of Electrical and Information Engineering, Hunan University, Changsha 410082, China
  • Received:2020-04-17 Revised:2020-08-14 Published:2021-05-05
  • Supported by:
    This work is supported by the National Natural Science Foundation of China (No.51707017), Science and Technology Project of State Grid Corporation of China (Research on the Development Form and Key Planning Technology of Sichuan Power Grid for the Construction of Pure Clean Energy Power System, No.SGSCJY00GHJS1900010)

摘要: 异步互联格局下,送端电网惯性大幅下降,因直流闭锁引发的高频问题较为严重,传统应对高频问题的稳控切机策略存在切机量不精确(过切或欠切)以及切机后系统转动惯量匮乏等风险。针对现有稳控切机方案的不适应性,提出一种计及系统频率稳定需求的多直流异步外送电网切机容量优化模型。模型中耦合大容量直流闭锁故障下各种频率指标约束、网络潮流约束、备用及切机量约束,考虑系统内各类型机组调节性能及位置的差异性,利用理想点法和优序图法得到各类型机组的切机惩罚因子,通过切机综合代价最小化目标确定大容量直流闭锁事故下送端电网的最优切机方案。以改进的IEEE RTS-79系统为例进行了算例分析,验证了所构建模型的有效性与频率适应性。

关键词: 异步联网, 送端电网, 切机, 惯性, 直流输电, 频率稳定

Abstract: For the asynchronous interconnection system, the inertia of sending-end power grid drops sharply. Because of the severe high frequency problems caused by bipolar blocking of a HVDC transmission line, the traditional generation shedding strategy for dealing with the high frequency problems has some risks such as inaccurate shedding capacity (i.e. over- shedding or under-shedding) and lack of the rotational inertia after shedding. In order to solve the inadequacy of existing generation shedding schemes, we propose a generation shedding capacity optimization model for the sending-end grid with multi-DC asynchronous outfeeds considering the stability of system frequencies. The model comprehensively considers a variety of constraints, such as the frequency constraints, network power flow constraints, reserve constraints, and the constraints of generator-tripping capacity. By taking account of the adjustment performance and geographical distribution differences of various units in the sending-end grid, the TOPSIS method and the Superiority Chart are used to obtain the penalty factors of various units, and the optimal generation shedding scheme of the sending-end grid is determined for the bipolar blocking fault of a large-capacity HVDC transmission line with the goal to minimize the comprehensive cost of generator tripping. An improved IEEE RTS-79 test system is taken for case study, which has verified the effectiveness and the frequency adaptability of the proposed model.

Key words: asynchronous interconnection, sending-end power grid, generation shedding, inertia, DC transmission, frequency stability