[1] DALAL N, TRIGGS B. Histograms of oriented gradients for human detection[C]//2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Washington D.C.:IEEE Computer Society, 2005:886-893. [2] FREUND Y, SCHAPIRE R E. A decision-theoretic generalization of on-line learning and an application to boosting[J]. Journal of Computer and System Sciences, 1997, 55(1):119-139. [3] VIOLA P, JONES M. Rapid object detection using a boosted cascade of simple features[C]//Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Washington D.C.:IEEE Computer Society, 2001. [4] FELZENSZWALB P F, GIRSHICK R B, MCALLESTER D. Cascade object detection with deformable part models[C]//2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Washington D.C.:IEEE Computer Society, 2010:2241-2248. [5] EVERINGHAM M, VAN GOOL L, WILLIAMS C K I, et al. The pascal visual object classes (VOC) challenge[J]. International Journal of Computer Vision, 2010, 88(2):303-338. [6] ZITNICK C L, DOLLÁR P. Edge boxes:locating object proposals from edges[C]//European Conference on Computer Vision-ECCV 2014, Cham:Springer, 2014:391-405. [7] UIJLINGS J R R, VAN DE SANDE K E A, GEVERS T, et al. Selective search for object recognition[J]. International Journal of Computer Vision, 2013, 104(2):154-171. [8] REN S, HE K, GIRSHICK R, et al. Faster R-CNN:towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6):1137-1149. [9] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once:unified, real-time object detection[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition, Washington D.C.:IEEE Computer Society, 2016:779-788. [10] LIU W, ANGUELOV D, ERHAN D, et al. SSD:single shot multibox detector[C]//European Conference on Computer Vision-ECCV 2016, Cham:Springer, 2016:21-37. [11] ZHANG X, ZHOU X, LIN M, et al. Shufflenet:an extremely efficient convolutional neural network for mobile devices[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Washington D.C.:IEEE Computer Society, 2018:6848-6856. [12] CHOLLET F. Xception:deep learning with depthwise separable convolutions[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition, Washington D.C.:IEEE Computer Society, 2017:1800-1807. [13] QI S, MA J, LIN J, et al. Unsupervised ship detection based on saliency and S-HOG descriptor from optical satellite images[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(7):1451-1455. [14] CORBANE C, NAJMAN L, PECOUL E, et al. A complete processing chain for ship detection using optical satellite imagery[J]. International Journal of Remote Sensing, 2010, 31(22):5837-5854. [15] ZHU C, ZHOU H, WANG R, et al. A novel hierarchical method of ship detection from spaceborne optical image based on shape and texture features[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(9):3446-3456. [16] BI F, ZHU B, GAO L, et al. A visual search inspired computational model for ship detection in optical satellite images[J]. IEEE Geoscience and Remote Sensing Letters, 2012, 9(4):749-753. [17] 孙俊, 何小飞, 谭文军, 等. 空洞卷积结合全局池化的卷积神经网络识别作物幼苗与杂草[J]. 农业工程学报, 2018, 34(11):159-165 SUN Jun, HE Xiaofei, TAN Wenjun, et al. Recognition of crop seedling and weed recognition based on dilated convolution and global pooling in CNN[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(11):159-165 [18] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Imagenet classification with deep convolutional neural networks:advances in neural information processing systems[C]//2012 TEEE Computer Society Conference on Computer Vision and Pattern Recognition, Washington D.C.:IEEE Computer Society, 2012:1097-1105. [19] 王璨, 武新惠, 李志伟. 基于卷积神经网络提取多尺度分层特征识别玉米杂草[J]. 农业工程学报, 2018, 34(5):144-151 WANG Can, WU Xinhui, LI Zhiwei. Recognition of maize and weed based on multi-scale hierarchical features extracted by convolutional neural network[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(5):144-151 [20] 姜红花, 王鹏飞, 张昭, 等. 基于卷积网络和哈希码的玉米田间杂草快速识别方法[J]. 农业机械学报, 2018, 49(11):30-38 JIANG Honghua, WANG Pengfei, ZHANG Zhao, et al. Fast Identification of field weeds based on deep convolutional network and binary hash code[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(11):30-38 [21] 张旭, 王斌, 张旭. CNN在农田杂草图像识别的可行性探讨[J]. 电脑知识与技术, 2018, 14(22):187-189 ZHANG Xu, WANG Bin, ZHANG Xu. Discussion on feasibility of CNN with image recognition in farmland weeds[J]. Computer Knowledge and Technology, 2018, 14(22):187-189 |