中国电力 ›› 2019, Vol. 52 ›› Issue (9): 148-153.DOI: 10.11930/j.issn.1004-9649.201905023

• 发电 • 上一篇    下一篇

基于高光谱图像和卷积神经网络的燃煤热值估计算法

杨明花1, 张克涵2   

  1. 1. 浙江浙能温州发电有限公司, 浙江 温州 325602;
    2. 西北工业大学, 陕西 西安 710072
  • 收稿日期:2019-05-06 修回日期:2019-08-14 出版日期:2019-09-05 发布日期:2019-09-19
  • 通讯作者: 张克涵(1971-),男,通信作者,副教授,从事控制理论与控制工程研究,E-mail:zhangkehan210@163.com
  • 作者简介:杨明花(1965-),女,高级工程师,从事热工自动化技术研究应用和计量管理工作,E-mail:yangmhwz@163.com
  • 基金资助:
    陕西省重点研发计划资助项目(2018GY-193);浙江省能源集团有限公司科技项目(ZJNY-2014-010)。

Coal Calorific Value Estimation Algorithm Based on Hyperspectral Image and Convolutional Neural Network

YANG Minghua1, ZHANG Kehan2   

  1. 1. Zhejiang Zheneng Wenzhou Power Generation Co., Ltd., Wenzhou 325602, China;
    2. Northwestern Polytechnical University, Xi'an 710072, China
  • Received:2019-05-06 Revised:2019-08-14 Online:2019-09-05 Published:2019-09-19
  • Supported by:
    This work is supported by Shaanxi Province's Key Research and Development Program (No.2018GY-193) and Science and Technology Program of Zhejiang Energy Group Co., Ltd.(No. ZJNY-2014-010).

摘要: 火力发电是中国主要的发电方式,煤质优劣直接决定着发电厂的安全生产、经济效益,而收到基低位发热量是煤质优劣的关键指标之一。针对目前煤炭发热量测量程序复杂、不易实时监测等问题,基于高光谱图像和卷积神经网络,提出一种方便、快速的热值估计算法。通过高光谱数据采集系统对煤样进行光谱成像,经过高斯低通滤波以及主成分分析,消除采集噪声以及光谱通道之间的数据冗余性;然后采用邻域均值化数据采集方法获得平滑的训练数据与测试数据,搭建7层的卷积神经网络;通过实验验证了所提方法的有效性,结果显示该方法具有较高的预测精度。

关键词: 火力发电, 收到基低位发热量, 高光谱图像, 主成分分析, 卷积神经网络

Abstract: Thermal power generation is still the major power generation mode in China. Since the quality of coal quality directly determines the safe production and economic benefits of power plants, net calorific value as received basis has become one of the key indicators of coal quality. Regarding the current problems such as complicated measurement procedures of coal calorific value and limitations of the general method in situations where real-time monitoring is required, this paper proposes a convenient and fast calorific value estimating algorithm based on hyperspectral image and convolutional neural network. Firstly, the image data of coal is collected by the hyperspectral data acquisition system. After Gaussian low-pass filtering and principal component analysis, the noise and data redundancy between spectral channels are eliminated. Then, the smooth training and test data are obtained by using the neighborhood average filtering and a 7-layer convolutional neural network is established. Finally, the effectiveness of the proposed method is verified by experiments. The results show that the method has high prediction accuracy.

Key words: thermal power generation, net calorific value as received basis, hyperspectral image, principal component analysis, convolutional neural network

中图分类号: