[1] LU X, MCELROY M B, PENG W, et al. Challenges faced by China compared with the US in developing wind power[J]. Nature Energy, 2016, 1:1-6. [2] VITHAYASRICHAREON P, RIESZ J, MACGILL I. Operational flexibility of future generation portfolios with high renewables[J]. Applied Energy, 2017, 206:32-41. [3] GONZALEZ-SALAZAR M A, KIRSTEN T, PRCHLIK L. Review of the operational flexibility and emissions of gas-and coal-fired power plants in a future with growing renewables[J]. Renewable and Sustainable Energy Reviews, 2018, 82:1497-1513. [4] GARDARSDÓTTIR SÓ, GÖRANSSON L, NORMANN F, et al. Improving the flexibility of coal-fired power generators:Impact on the composition of a cost-optimal electricity system[J]. Applied Energy, 2018, 209:277-289. [5] WANG D, ZHOU Y L, ZHOU H C. A mathematical model suitable for simulation of fast cut back of coal-fired boiler-turbine plant[J]. Applied Thermal Engineering, 2016, 108:546-554. [6] 李福尚, 王旭荣, 戴义平, 等. 超临界机组一次调频对汽轮机动态热力特性的影响[J]. 热能动力工程, 2014, 29(5):470-476 LI Fushang, WANG Xurong, DAI Yiping, et al. Influence of the primary frequency modulation of a supercritical unit on the dynamic thermal characteristics of its steam turbine[J]. Journal of Engineering for Thermal Energy and Power, 2014, 29(5):470-476 [7] 盛锴, 江效龙, 周年光, 等. 基于系统仿真的火电机组一次调频性能优化[J]. 热能动力工程, 2016, 31(10):109-114 SHENG Kai, JIANG Xiaolong, ZHOU Nianguang, et al. Performance optimization of primary frequency regulation based on modeling of turbine and its governing system[J]. Journal of Engineering for Thermal Energy and Power, 2016, 31(10):109-114 [8] 王永庆, 赵嘉, 曹越, 等. 超临界机组及其一次调频控制系统的辨识与仿真[J]. 热能动力工程, 2018, 33(2):111-116 WANG Yongqing, ZHAO Jia, CAO Yue, et al. Identification and simulation of a supercritical unit and its primary frequency modulation and control system[J]. Journal of Engineering for Thermal Energy and Power, 2018, 33(2):111-116 [9] 黄卫剑, 张曦, 陈世和, 等. 提高火电机组一次调频响应速度[J]. 中国电力, 2011, 44(1):73-77 HUANG Weijian, ZHANG Xi, CHEN Shihe, et al. Enhancing response speed of primary frequency regulation in thermal power unit[J]. Electric Power, 2011, 44(1):73-77 [10] LONG D T, WANG W, YAO C, et al. An experiment-based model of condensate throttling and its utilization in load control of 1000 MW power units[J]. Energy, 2017, 133:941-954. [11] 刘吉臻, 刘彧昕, 王玮. 基于汽水分布方程的热力发电机组凝结水节流静态负荷响应特性[J]. 动力工程学报, 2015, 35(4):318-324 LIU Jizhen, LIU Yuxin, WANG Wei. Study on static load response of thermal power units caused by condensate throttling based on steam-water distribution equation[J]. Journal of Chinese Society of Power Engineering, 2015, 35(4):318-324 [12] WANG W, LIU J Z, ZENG D L, et al. Modeling for condensate throttling and its application on the flexible load control of power plants[J]. Applied Thermal Engineering, 2016, 95:303-310. [13] 祝建飞, 沈丛奇, 姚峻, 等. 汽轮机组经济运行方式下新型一次调频技术[J]. 中国电力, 2017, 50(5):144-150 ZHU Jianfei, SHEN Congqi, YAO Jun, et al. New primary frequency regulation technologies for steam turbines under economical operation mode[J]. Electric Power, 2017, 50(5):144-150 [14] 陈波, 周慎学, 丁宁, 等. 超(超)临界机组高加给水旁路调节方式的一次调频控制技术研究与试验[J]. 中国电力, 2017, 50(8):32-36 CHEN Bo, ZHOU Shenxue, DING Ning, et al. Research and test of the primary frequency control in ultra-supercritical units under feed water bypass control of HP heater[J]. Electric Power, 2017, 50(8):32-36 [15] ZHAO Y L, WANG C Y, LIU M, et al. Improving operational flexibility by regulating extraction steam of high-pressure heaters on a 660 MW supercritical coal-fired power plant:A dynamic simulation[J]. Applied Energy, 2018, 212:1295-1309. [16] ZHAO Y L, LIU M, WANG C Y, et al. Increasing operational flexibility of supercritical coal-fired power plants by regulating thermal system configuration during transient processes[J]. Applied Energy, 2018, 228:2375-2386. [17] 汤可怡, 杨建明, 蔡喜冬. 大型机组一次调频性能优化方法[J]. 发电设备, 2016, 30(6):374-377 TANG Keyi, YANG Jianming, CAI Xidong. Optimization on primary frequency regulation of large power units[J]. Power Equipment, 2016, 30(6):374-377 [18] 徐星, 谭锐, 李永生, 等. 1000 MW超超临界二次再热机组一次调频方式分析[J]. 中国电力, 2018, 51(2):169-175 XU Xing, TAN Rui, LI Yongsheng, et al. Analysis on primary frequency regulation of 1000 MW double-reheat ultra-supercritical units[J]. Electric Power, 2018, 51(2):169-175 [19] 王建强, 郑渭建, 童小忠, 等. 基于热网蓄热提升机组AGC、一次调频品质的试验研究[J]. 中国电力, 2014, 47(9):1-5 WANG Jianqiang, ZHENG Weijian, TONG Xiaozhong, et al. Experimental study on enhancing the quality of AGC and primary frequency regulation based on heat system accumulation[J]. Electric Power, 2014, 47(9):1-5 [20] 归一数, 沈丛奇, 陈欢乐, 等. 火电燃煤机组大频差一次调频性能研究与优化实施[J]. 中国电力, 2017, 50(4):1-5 GUI Yishu, SHEN Congqi, CHEN Huanle, et al. Research and optimization on primary frequency regulation characteristics with large frequency deviation for coal-fired power plants[J]. Electric Power, 2017, 50(4):1-5 [21] 樊印龙, 张宝, 顾正皓, 等. 节流配汽汽轮机组一次调频经济代价分析[J]. 中国电力, 2016, 49(7):86-89 FAN Yinlong, ZHANG Bao, GU Zhenghao, et al. Analysis on economic cost of primary frequency regulation of throttling steam turbine units[J]. Electric Power, 2016, 49(7):86-89 |