中国电力 ›› 2018, Vol. 51 ›› Issue (11): 117-124.DOI: 10.11930/j.issn.1004-9649.201802037

• 新能源 • 上一篇    下一篇

超级电容器-飞轮-蓄电池混合储能系统容量配置方法研究

李想, 张建成, 王宁   

  1. 华北电力大学 新能源电力系统国家重点实验室, 河北 保定 071003
  • 收稿日期:2018-02-03 修回日期:2018-06-03 出版日期:2018-11-05 发布日期:2018-11-16
  • 作者简介:李想(1993-),女,硕士研究生,从事混合储能系统容量优化配置方面的研究,E-mail:2417612936@qq.com;张建成(1965-2018),男,教授,博士生导师,从事电力系统分析与控制、柔性储能技术、新能源发电控制技术等方面的研究,E-mail:zhang_jiancheng@126.com;王宁(1982-),女,博士研究生,讲师,从事光伏发电控制技术、柔性储能技术等方面的研究,E-mail:ncepuwangning@126.com
  • 基金资助:
    国家自然科学基金资助项目(51177047),河北省科技计划项目(16214504D),中央高校基本科研业务费专项资金资助项目(2016MS89)。

Capacity Configuration Strategy for Super Capacitor-Flywheel-Battery Hybrid Energy Storage System

LI Xiang, ZHANG Jiancheng, WANG Ning   

  1. State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Baoding 071003, China
  • Received:2018-02-03 Revised:2018-06-03 Online:2018-11-05 Published:2018-11-16
  • Supported by:
    This work is supported by National Natural Science Foundation of China (No.51177047) and Science and Technology Program of Hebei Province (No.16214504D) and Fundamental Research Funds for the Central Universities (No.2016MS89).

摘要: 采用混合储能系统能够降低储能配置的年均综合成本,提高光伏发电系统的经济效益。针对超级电容器-飞轮-蓄电池混合储能系统,采用经验模态分解方法把光伏发电功率与负荷功率之间的不平衡功率分为高频、中频和低频三部分,分别作为超级电容器、飞轮和蓄电池的参考功率;构建以年均综合成本最小为目标函数,同时考虑混合储能系统的充电与放电功率和剩余电量等约束条件的容量优化配置模型,采用遗传算法进行优化,并通过实例分析验证了该配置方法的有效性。

关键词: 光伏发电, 混合储能, 经验模态分解, 分界频率, 容量配置

Abstract: Through the utilization of the hybrid energy storage system, the annual comprehensive cost of energy storage system can be reduced and the economic benefit of photovoltaic power generation system can also be improved. The empirical mode decomposition method is used to decompose the power imbalance between photovoltaic generation and load into high frequency component, intermediate frequency component and low frequency component, which is taken as the reference power of super capacitor, flywheel and battery respectively. In addition, this paper established capacity allocation optimization model with the annual cost as objective function, charging/discharging power and state of charge as the constraints. Genetic algorithm was then deployed to minimize the objective function. Finally the case study result verified the effectiveness of the configuration strategy.

Key words: photovoltaic power generation, hybrid energy storage system, empirical mode decomposition, dividing frequency, capacity allocation

中图分类号: