中国电力 ›› 2017, Vol. 50 ›› Issue (5): 88-94.DOI: 10.11930/j.issn.1004-9649.2017.05.088.07

• 新能源 • 上一篇    下一篇

基于最优权重和隶属云的风电机组状态模糊综合评估

赵洪山1, 张健平2, 李浪1   

  1. 1. 华北电力大学 电气与电子工程学院,河北 保定 071003;
    2. 国网沧州供电公司,河北 沧州 061000
  • 收稿日期:2016-12-25 出版日期:2017-05-20 发布日期:2017-05-26
  • 作者简介:赵洪山(1965—),男,河北沧州人,教授,从事电力设备状态评估与维修策略研究。E-mail:zhaohshcn@126.com
  • 基金资助:
    国家科技支撑计划资助项目(2015BAA06B03)

Fuzzy Comprehensive Assessment of Wind Turbines Status Based on Optimal Weight and Membership Cloud

ZHAO Hongshan1, ZHANG Jianping2, LI Lang1   

  1. 1. School of Electrical and Electronic Engineering, North China Electric Power University, Baoding 071003, China;
    2. State Grid Cangzhou Electric Power Supply Company, Cangzhou 061000, China
  • Received:2016-12-25 Online:2017-05-20 Published:2017-05-26
  • Supported by:
    This work is supported by the National Science and Technology Support Program (No. 2015BAA06B03).

摘要: 针对风电机组状态模糊综合评估存在评估指标权重和隶属度确定主观性强的问题,提出了一种基于最优权重和隶属云的风电机组状态模糊综合评估方法。首先,采用层次分析法(AHP)构建状态评估指标体系,引入相对劣化度对状态评估指标进行归一化处理和状态等级划分;其次,采用熵权法和AHP分别确定状态评估指标的客观和主观权重,并通过非线性规划最优化解法确定状态评估指标的最优权重;然后,利用正态隶属云的概念及生成算法,确定状态评估指标对各状态等级的隶属度,构成评估矩阵;最后,通过实例仿真,并与其他评估方法进行比较,验证该方法是更加有效的和合理的。

关键词: 风电机组, 状态评估, 最优权重, 隶属云, 模糊综合评估

Abstract: In order to overcome strong subjectivity of empowerment and membership evaluation of status assessment indices in fuzzy comprehensive assessment(FCA), a FCA wind turbine status assessment algorithm is proposed based on optimal weight and membership cloud. Firstly, status assessment indices system is established based on analytic hierarchy process (AHP). The relative deterioration degree is introduced to normalize assessment indices and divide condition levels. Then, entropy weight method and AHP are used to determine objective and subjective weights respectively to obtain optimal integrated weight by nonlinear programming. Next, by utilizing generation algorithm of normal membership cloud, the memberships of assessment indices are obtained to build evaluation matrix. Finally, comparing of simulation results with other assessment methods validates effectiveness of proposed method.

Key words: wind turbines, condition assessment, optimal weight, membership cloud, fuzzy comprehensive assessment

中图分类号: