中国电力 ›› 2025, Vol. 58 ›› Issue (5): 21-32.DOI: 10.11930/j.issn.1004-9649.202411101

• 面向新型配电系统的人工智能与新能源技术 • 上一篇    下一篇

基于时序分解与共形分位数回归的超短期光伏功率区间预测

桂前进1(), 徐文法1(), 李晓阳1(), 罗利荣1, 叶海峰2, 王正风2   

  1. 1. 国网安徽省电力有限公司安庆供电公司,安徽 安庆 246000
    2. 国网安徽省电力有限公司,安徽 合肥 230000
  • 收稿日期:2024-11-28 发布日期:2025-05-30 出版日期:2025-05-28
  • 作者简介:
    桂前进(1976),男,通信作者,高级工程师,从事电力系统及其自动化、新能源并网消纳研究,E-mail:guiqj1030@ah.sgcc.com.cn
    徐文法(1993),男,助理工程师,从事电力系统及其自动化研究,E-mail:1803273843@qq.com
    李晓阳(1992),男,工程师,从事电力系统及其自动化研究,E-mail:617775431@qq.com
  • 基金资助:
    国网安徽省电力有限公司科技项目(B312D023000Q)。

Ultra-Short-Term Photovoltaic Power Interval Forecasting Based on Time-Series Decomposition and Conformal Quantile Regression

GUI Qianjin1(), XU Wenfa1(), LI Xiaoyang1(), LUO Lirong1, YE Haifeng2, WANG Zhengfeng2   

  1. 1. Anqing Power Supply Company, State Grid Anhui Electric Power Co., Ltd., Anqing 246000, China
    2. State Grid Anhui Electric Power Co., Ltd., Hefei 230000, China
  • Received:2024-11-28 Online:2025-05-30 Published:2025-05-28
  • Supported by:
    This work is supported by Science & Technology Project of State Grid Anhui Electric Power Co., Ltd. (No.B312D023000Q).

摘要:

传统光伏功率区间预测依赖特定概率分布假设,而实际光伏功率分布存在异方差性,导致预设概率分布与实际往往并不一致,影响区间预测的准确性及置信度。对此,提出了一种基于时序分解与共形分位数回归的超短期光伏功率区间预测方法。首先,基于NeuralProphet时序分解框架将光伏功率序列建模为趋势分量、周期分量、自回归分量3类线性可加子序列之和。然后,采用分段线性模型、傅里叶级数分解模型、AR-Net模型分别对3类子序列进行拟合建模,通过傅里叶级数分解模型强化对光伏日周期性与季节周期性的拟合能力。最后,通过计算共形分数量化模型预测结果的不确定性,进一步基于共形分数确定预测值的分位数区间,整个过程无须预设概率分布,并可实现对预测区间宽度的动态调整。算例表明,在确定性光伏功率预测方面,所提方法优于TimesNet、Informer等基于Transformer的先进算法,且日周期与季节周期成分的引入进一步降低了11.65%的预测误差;在区间预测方面,所提方法在预测区间覆盖率、标准化区间宽度、区间覆盖宽度等指标上均优于传统分位数回归算法。

关键词: 光伏发电, 时间序列分解, 周期分量, 共形预测, 分位数回归, 区间预测

Abstract:

Traditional PV power interval forecasting relies on specific probabilistic distribution assumptions, which often result in inconsistencies between the assumed probability distributions and the actual heteroscedastic nature of PV power distributions, thus affecting the accuracy and confidence level of interval predictions. To address this issue, an ultra-short-term PV power interval forecasting method based on time-series decomposition and conformal quantile regression (CQR) is proposed. Firstly, the PV power series is modeled as the sum of three additive subseries: trend components, periodic components, and autoregressive components, based on the NeuralProphet time-series decomposition framework. Then, piecewise linear models, Fourier series decomposition models, and AR-Net models are respectively employed to fit the three subseries, with the Fourier series decomposition model enhancing the fitting capability for daily and seasonal periodicities of PV power. Finally, by calculating the prediction uncertainty of the CQR model, the quantile interval of the prediction results are determined based on conformal scores, enabling dynamic adjustment of the prediction interval width without the need for preset probability distributions. Case studies demonstrate that the proposed method outperforms the advanced Transformer-based algorithms like TimesNet and Informer in deterministic PV power forecasting tasks, and with the introduction of the daily and seasonal periodic components, the prediction error is further reduced by 11.65%. In interval forecasting tasks, the proposed method surpasses the traditional quantile regression algorithms in terms of prediction interval coverage rate, normalized interval width, and coverage width-based criterion.

Key words: photovoltaic power generation, time-series decomposition, periodic component, conformal prediction, quantile regression, interval predication