中国电力 ›› 2025, Vol. 58 ›› Issue (5): 21-32.DOI: 10.11930/j.issn.1004-9649.202411101
• 面向新型配电系统的人工智能与新能源技术 • 上一篇 下一篇
桂前进1(), 徐文法1(
), 李晓阳1(
), 罗利荣1, 叶海峰2, 王正风2
收稿日期:
2024-11-28
发布日期:
2025-05-30
出版日期:
2025-05-28
作者简介:
基金资助:
GUI Qianjin1(), XU Wenfa1(
), LI Xiaoyang1(
), LUO Lirong1, YE Haifeng2, WANG Zhengfeng2
Received:
2024-11-28
Online:
2025-05-30
Published:
2025-05-28
Supported by:
摘要:
传统光伏功率区间预测依赖特定概率分布假设,而实际光伏功率分布存在异方差性,导致预设概率分布与实际往往并不一致,影响区间预测的准确性及置信度。对此,提出了一种基于时序分解与共形分位数回归的超短期光伏功率区间预测方法。首先,基于NeuralProphet时序分解框架将光伏功率序列建模为趋势分量、周期分量、自回归分量3类线性可加子序列之和。然后,采用分段线性模型、傅里叶级数分解模型、AR-Net模型分别对3类子序列进行拟合建模,通过傅里叶级数分解模型强化对光伏日周期性与季节周期性的拟合能力。最后,通过计算共形分数量化模型预测结果的不确定性,进一步基于共形分数确定预测值的分位数区间,整个过程无须预设概率分布,并可实现对预测区间宽度的动态调整。算例表明,在确定性光伏功率预测方面,所提方法优于TimesNet、Informer等基于Transformer的先进算法,且日周期与季节周期成分的引入进一步降低了11.65%的预测误差;在区间预测方面,所提方法在预测区间覆盖率、标准化区间宽度、区间覆盖宽度等指标上均优于传统分位数回归算法。
桂前进, 徐文法, 李晓阳, 罗利荣, 叶海峰, 王正风. 基于时序分解与共形分位数回归的超短期光伏功率区间预测[J]. 中国电力, 2025, 58(5): 21-32.
GUI Qianjin, XU Wenfa, LI Xiaoyang, LUO Lirong, YE Haifeng, WANG Zhengfeng. Ultra-Short-Term Photovoltaic Power Interval Forecasting Based on Time-Series Decomposition and Conformal Quantile Regression[J]. Electric Power, 2025, 58(5): 21-32.
测试集 | 指标 | 模型 | ||||||||||||||
NP | NP_Season | GRU | TimesNet | NHITS | Informer | |||||||||||
测 试 集 一 | 春 | MAE | 0.203 | 0.127 | 0.258 | 0.579 | 0.330 | 0.508 | ||||||||
RMSE | 0.426 | 0.373 | 0.518 | 0.896 | 0.579 | 0.863 | ||||||||||
夏 | MAE | 0.193 | 0.218 | 0.287 | 0.517 | 0.307 | 0.457 | |||||||||
RMSE | 0.510 | 0.516 | 0.558 | 0.844 | 0.570 | 0.798 | ||||||||||
秋 | MAE | 0.191 | 0.180 | 0.257 | 0.474 | 0.282 | 0.434 | |||||||||
RMSE | 0.494 | 0.495 | 0.530 | 0.756 | 0.545 | 0.722 | ||||||||||
冬 | MAE | 0.238 | 0.201 | 0.240 | 0.415 | 0.247 | 0.383 | |||||||||
RMSE | 0.494 | 0.487 | 0.484 | 0.660 | 0.473 | 0.628 | ||||||||||
平均 | MAE | 0.206 | 0.182 | 0.261 | 0.496 | 0.292 | 0.446 | |||||||||
RMSE | 0.481 | 0.468 | 0.523 | 0.789 | 0.542 | 0.753 | ||||||||||
测试 集二 | MAE | 0.187 | 0.172 | 0.262 | 0.668 | 0.436 | 0.730 | |||||||||
RMSE | 0.499 | 0.493 | 0.511 | 0.933 | 0.682 | 1.104 |
表 1 不同算法在4个测试集中光伏预测数据的MAE和RMSE指标
Table 1 Performance of different algorithms in MAE and RMSE metrics for photovoltaic forecast data in four test sets
测试集 | 指标 | 模型 | ||||||||||||||
NP | NP_Season | GRU | TimesNet | NHITS | Informer | |||||||||||
测 试 集 一 | 春 | MAE | 0.203 | 0.127 | 0.258 | 0.579 | 0.330 | 0.508 | ||||||||
RMSE | 0.426 | 0.373 | 0.518 | 0.896 | 0.579 | 0.863 | ||||||||||
夏 | MAE | 0.193 | 0.218 | 0.287 | 0.517 | 0.307 | 0.457 | |||||||||
RMSE | 0.510 | 0.516 | 0.558 | 0.844 | 0.570 | 0.798 | ||||||||||
秋 | MAE | 0.191 | 0.180 | 0.257 | 0.474 | 0.282 | 0.434 | |||||||||
RMSE | 0.494 | 0.495 | 0.530 | 0.756 | 0.545 | 0.722 | ||||||||||
冬 | MAE | 0.238 | 0.201 | 0.240 | 0.415 | 0.247 | 0.383 | |||||||||
RMSE | 0.494 | 0.487 | 0.484 | 0.660 | 0.473 | 0.628 | ||||||||||
平均 | MAE | 0.206 | 0.182 | 0.261 | 0.496 | 0.292 | 0.446 | |||||||||
RMSE | 0.481 | 0.468 | 0.523 | 0.789 | 0.542 | 0.753 | ||||||||||
测试 集二 | MAE | 0.187 | 0.172 | 0.262 | 0.668 | 0.436 | 0.730 | |||||||||
RMSE | 0.499 | 0.493 | 0.511 | 0.933 | 0.682 | 1.104 |
测试集 | 方法 | 置信水平 | ||||||||||||||||||||||||||
95% | 90% | 85% | ||||||||||||||||||||||||||
PICP | PINAW | NIW | CWC | PICP | PINAW | NIW | CWC | PICP | PINAW | NIW | CWC | |||||||||||||||||
测 试 集 一 | 春 | QR | 0.882 | 0.087 | 0.885 | 2.692 | 0.831 | 0.041 | 0.448 | 1.346 | 0.768 | 0.034 | 0.392 | 2.056 | ||||||||||||||
CQR | 0.942 | 0.086 | 0.823 | 0.215 | 0.874 | 0.039 | 0.402 | 0.182 | 0.814 | 0.030 | 0.332 | 0.212 | ||||||||||||||||
夏 | QR | 0.889 | 0.101 | 1.156 | 2.236 | 0.856 | 0.065 | 0.775 | 0.654 | 0.842 | 0.053 | 0.639 | 0.132 | |||||||||||||||
CQR | 0.961 | 0.102 | 1.074 | 0.102 | 0.886 | 0.067 | 0.773 | 0.203 | 0.834 | 0.044 | 0.537 | 0.142 | ||||||||||||||||
秋 | QR | 0.918 | 0.111 | 1.016 | 0.658 | 0.811 | 0.061 | 0.635 | 5.285 | 0.870 | 0.081 | 0.783 | 0.081 | |||||||||||||||
CQR | 0.923 | 0.122 | 1.112 | 0.590 | 0.843 | 0.066 | 0.657 | 1.200 | 0.855 | 0.080 | 0.793 | 0.080 | ||||||||||||||||
冬 | QR | 0.874 | 0.094 | 0.959 | 4.289 | 0.853 | 0.065 | 0.678 | 0.744 | 0.803 | 0.075 | 0.836 | 0.863 | |||||||||||||||
CQR | 0.894 | 0.087 | 0.869 | 1.518 | 0.887 | 0.056 | 0.566 | 0.164 | 0.795 | 0.058 | 0.654 | 0.969 | ||||||||||||||||
平均 | QR | 0.891 | 0.098 | 1.004 | 2.469 | 0.838 | 0.058 | 0.634 | 2.007 | 0.821 | 0.061 | 0.662 | 0.783 | |||||||||||||||
CQR | 0.930 | 0.099 | 0.969 | 0.606 | 0.873 | 0.057 | 0.599 | 0.437 | 0.825 | 0.053 | 0.579 | 0.351 | ||||||||||||||||
测试集二 | QR | 0.971 | 0.254 | 0.261 | 0.254 | 0.845 | 0.082 | 0.098 | 0.185 | 0.802 | 0.125 | 0.156 | 1.513 | |||||||||||||||
CQR | 0.954 | 0.120 | 0.126 | 0.120 | 0.926 | 0.089 | 0.096 | 0.089 | 0.855 | 0.147 | 0.172 | 0.147 |
表 2 分位数回归和共形分位数的PICP、PINAW、NIW与CWC指标
Table 2 Performance of QR and CQR in PICP, PINAW, NIW and CWC metrics
测试集 | 方法 | 置信水平 | ||||||||||||||||||||||||||
95% | 90% | 85% | ||||||||||||||||||||||||||
PICP | PINAW | NIW | CWC | PICP | PINAW | NIW | CWC | PICP | PINAW | NIW | CWC | |||||||||||||||||
测 试 集 一 | 春 | QR | 0.882 | 0.087 | 0.885 | 2.692 | 0.831 | 0.041 | 0.448 | 1.346 | 0.768 | 0.034 | 0.392 | 2.056 | ||||||||||||||
CQR | 0.942 | 0.086 | 0.823 | 0.215 | 0.874 | 0.039 | 0.402 | 0.182 | 0.814 | 0.030 | 0.332 | 0.212 | ||||||||||||||||
夏 | QR | 0.889 | 0.101 | 1.156 | 2.236 | 0.856 | 0.065 | 0.775 | 0.654 | 0.842 | 0.053 | 0.639 | 0.132 | |||||||||||||||
CQR | 0.961 | 0.102 | 1.074 | 0.102 | 0.886 | 0.067 | 0.773 | 0.203 | 0.834 | 0.044 | 0.537 | 0.142 | ||||||||||||||||
秋 | QR | 0.918 | 0.111 | 1.016 | 0.658 | 0.811 | 0.061 | 0.635 | 5.285 | 0.870 | 0.081 | 0.783 | 0.081 | |||||||||||||||
CQR | 0.923 | 0.122 | 1.112 | 0.590 | 0.843 | 0.066 | 0.657 | 1.200 | 0.855 | 0.080 | 0.793 | 0.080 | ||||||||||||||||
冬 | QR | 0.874 | 0.094 | 0.959 | 4.289 | 0.853 | 0.065 | 0.678 | 0.744 | 0.803 | 0.075 | 0.836 | 0.863 | |||||||||||||||
CQR | 0.894 | 0.087 | 0.869 | 1.518 | 0.887 | 0.056 | 0.566 | 0.164 | 0.795 | 0.058 | 0.654 | 0.969 | ||||||||||||||||
平均 | QR | 0.891 | 0.098 | 1.004 | 2.469 | 0.838 | 0.058 | 0.634 | 2.007 | 0.821 | 0.061 | 0.662 | 0.783 | |||||||||||||||
CQR | 0.930 | 0.099 | 0.969 | 0.606 | 0.873 | 0.057 | 0.599 | 0.437 | 0.825 | 0.053 | 0.579 | 0.351 | ||||||||||||||||
测试集二 | QR | 0.971 | 0.254 | 0.261 | 0.254 | 0.845 | 0.082 | 0.098 | 0.185 | 0.802 | 0.125 | 0.156 | 1.513 | |||||||||||||||
CQR | 0.954 | 0.120 | 0.126 | 0.120 | 0.926 | 0.089 | 0.096 | 0.089 | 0.855 | 0.147 | 0.172 | 0.147 |
1 | 原希尧, 王关涛, 朱若源, 等. 碳-绿色证书交易机制下考虑回收P2G余热和需求响应的PIES优化调度[J]. 电力建设, 2023, 44 (3): 25- 35. |
YUAN Xiyao, WANG Guantao, ZHU Ruoyuan, et al. Optimal scheduling of park integrated energy system with P2G waste heat recovery and demand response under carbon-green certificate trading mechanism[J]. Electric Power Construction, 2023, 44 (3): 25- 35. | |
2 | 王海军, 居蓉蓉, 董颖华. 基于时空关联特征与B-LSTM模型的分布式光伏功率区间预测[J]. 中国电力, 2024, 57 (7): 74- 80. |
WANG Haijun, JU Rongrong, DONG Yinghua. Distributed photovoltaic power interval prediction based on spatio-temporal correlation feature and B-LSTM model[J]. Electric Power, 2024, 57 (7): 74- 80. | |
3 | 王瑞, 高强, 逯静. 基于CEEMDAN-LSSVM-ARIMA模型的短期光伏功率预测[J]. 传感器与微系统, 2022, 41 (5): 118- 122. |
WANG Rui, GAO Qiang, LU Jing. Short-term photovoltaic power prediction based on CEEMDAN-LSSVM-ARIMA model[J]. Transducer and Microsystem Technologies, 2022, 41 (5): 118- 122. | |
4 |
PAN M Z, LI C, GAO R, et al. Photovoltaic power forecasting based on a support vector machine with improved ant colony optimization[J]. Journal of Cleaner Production, 2020, 277, 123948.
DOI |
5 | 王伟亮, 刘会巧, 张天宇, 等. 基于多任务集成学习的储能电池剩余使用寿命预测[J]. 电力建设, 2024, 45 (11): 25- 33. |
WANG Weiliang, LIU Huiqiao, ZHANG Tianyu, et al. Multi-task ensemble learning-based prediction of remaining useful life of energy-storage batteries[J]. Electric Power Construction, 2024, 45 (11): 25- 33. | |
6 | 王开艳, 杜浩东, 贾嵘, 等. 基于相似日聚类和QR-CNN-BiLSTM模型的光伏功率短期区间概率预测[J]. 高电压技术, 2022, 48 (11): 4372- 4388. |
WANG Kaiyan, DU Haodong, JIA Rong, et al. Short-term interval probability prediction of photovoltaic power based on similar daily clustering and QR-CNN-BiLSTM model[J]. High Voltage Engineering, 2022, 48 (11): 4372- 4388. | |
7 | 滕陈源, 丁逸超, 张有兵, 等. 基于VMD-Informer-BiLSTM模型的超短期光伏功率预测[J]. 高电压技术, 2023, 49 (7): 2961- 2971. |
TENG Chenyuan, DING Yichao, ZHANG Youbing, et al. Ultra-short-term photovoltaic power prediction based on VMD-informer-BiLSTM model[J]. High Voltage Engineering, 2023, 49 (7): 2961- 2971. | |
8 | 张冬冬, 单琳珂, 刘天皓. 人工智能技术在风力与光伏发电数据挖掘及功率预测中的应用综述[J]. 综合智慧能源, 2025, 47 (3): 32- 46. |
ZHANG Dongdong, SHAN Linke, LIU Tianhao. Review on the application of artificial intelligence in data mining and wind and photovoltaic power forecasting[J]. Integrated Intelligent Energy, 2025, 47 (3): 32- 46. | |
9 | 任密蜂, 王家辉, 叶泽甫, 等. 一种适用于单/多光伏电站的迁移超短期光伏预测建模框架[J]. 太阳能学报, 2024, 45 (6): 359- 367. |
REN Mifeng, WANG Jiahui, YE Zefu, et al. Transfer ultra-short term photovoltaic prediction modeling framework for single/multiple photovoltaic power stations[J]. Acta Energiae Solaris Sinica, 2024, 45 (6): 359- 367. | |
10 |
林帆, 张耀, 东琦, 等. 基于分位数插值和深度自回归网络的光伏出力概率预测[J]. 电力系统自动化, 2023, 47 (9): 79- 87.
DOI |
LIN Fan, ZHANG Yao, DONG Qi, et al. Probability prediction of photovoltaic output based on quantile interpolation and deep autoregressive network[J]. Automation of Electric Power Systems, 2023, 47 (9): 79- 87.
DOI |
|
11 | 张娜, 葛磊蛟. 基于SOA优化的光伏短期出力区间组合预测[J]. 太阳能学报, 2021, 42 (5): 252- 259. |
ZHANG Na, GE Leijiao. Photovoltaic system short-term power interval hybrid forecasting method based on seeker optimization algorithm[J]. Acta Energiae Solaris Sinica, 2021, 42 (5): 252- 259. | |
12 | 梅飞, 顾佳琪, 裴鑫, 等. 基于自适应滚动匹配预测修正模式的光伏区间预测[J]. 电力自动化设备, 2022, 42 (2): 92- 98. |
MEI Fei, GU Jiaqi, PEI Xin, et al. Photovoltaic interval prediction based on adaptive rolling matching prediction correction mode[J]. Electric Power Automation Equipment, 2022, 42 (2): 92- 98. | |
13 |
YU M, NIU D X, WANG K K, et al. Short-term photovoltaic power point-interval forecasting based on double-layer decomposition and WOA-BiLSTM-Attention and considering weather classification[J]. Energy, 2023, 275, 127348.
DOI |
14 | 杨国清, 李建基, 王德意, 等. 基于信息熵变权区间组合和边界逼近的短期光伏功率区间预测[J]. 太阳能学报, 2023, 44 (2): 381- 390. |
YANG Guoqing, LI Jianji, WANG Deyi, et al. Short-term photovoltaic power interval prediction based on information entropy variable weight interval combination and boundary approximation[J]. Acta Energiae Solaris Sinica, 2023, 44 (2): 381- 390. | |
15 |
吴振威, 蒋小平, 马会萌, 等. 多时间尺度的光伏出力波动特性研究[J]. 现代电力, 2014, 31 (1): 58- 61.
DOI |
WU Zhenwei, JIANG Xiaoping, MA Huimeng, et al. Study on fluctuations characteristics of photovoltaic power output in different time scales[J]. Modern Electric Power, 2014, 31 (1): 58- 61.
DOI |
|
16 | 张东宁. 基于改进电导增量法的光伏最大功率点跟踪策略研究[J]. 太阳能学报, 2022, 43 (8): 82- 90. |
ZHANG Dongning. Research on photovoltaic maximum power point tracking strategy based on improved conductance increment method[J]. Acta Energiae Solaris Sinica, 2022, 43 (8): 82- 90. | |
17 |
KOENKER R, HALLOCK K F. Quantile regression[J]. Journal of Economic Perspectives, 2001, 15 (4): 143- 156.
DOI |
18 | BARBER R F, CANDÈS E J, RAMDAS A, et al. Conformal prediction beyond exchangeability[J]. The Annals of Statistics, 2023, 51 (2): 816- 845. |
19 |
OLSSON H, KARTASALO K, MULLIQI N, et al. Estimating diagnostic uncertainty in artificial intelligence assisted pathology using conformal prediction[J]. Nature Communications, 2022, 13 (1): 7761.
DOI |
20 |
HU J M, LUO Q X, TANG J W, et al. Conformalized temporal convolutional quantile regression networks for wind power interval forecasting[J]. Energy, 2022, 248, 123497.
DOI |
21 |
KATH C, ZIEL F. Conformal prediction interval estimation and applications to day-ahead and intraday power markets[J]. International Journal of Forecasting, 2021, 37 (2): 777- 799.
DOI |
22 | 苏子越, 柴琳, 谢亮, 等. 基于变分模态分解的综合能源系统短期电负荷预测[J]. 热力发电, 2024, 53 (12): 21- 28. |
SU Ziyue, CHAI Lin, XIE Liang, et al. Short-term electrical load forecasting for integrated energy system based on variational mode decomposition[J]. Thermal Power Generation, 2024, 53 (12): 21- 28. | |
23 | TRIEBE O, HEWAMALAGE H, PILYUGINA P, et al. NeuralProphet: explainable forecasting at scale[EB/OL]. (2021-11-29) [2024-5-12]. https://arxiv.org/abs/2111.15397v1. |
24 |
俞胜, 黄福兴, 冯艳丽, 等. 新型电力AMI系统中基于Neural Prophet模型的电力负荷预测与修补研究[J]. 智慧电力, 2023, 51 (5): 44- 50.
DOI |
YU Sheng, HUANG Fuxing, FENG Yanli, et al. Neural prophet-based power load forecasting and repair in novel power AMI system[J]. Smart Power, 2023, 51 (5): 44- 50.
DOI |
|
25 | TRIEBE O, LAPTEV N, RAJAGOPAL R. AR-Net: a simple auto-regressive neural network for time-series[EB/OL]. (2019-11-27) [2024-6-29]. https://arxiv.org/abs/1911.12436v1. |
26 | FONTANA M, ZENI G, VANTINI S. Conformal prediction: a unified review of theory and new challenges[J]. Bernoulli, 2023, 29 (1): 1- 23. |
27 | 雷雯雯. 草图算法在共形预测中的应用[D]. 桂林: 桂林电子科技大学, 2023. |
LEI Wenwen. Application of sketching algorithm in conformal prediction[D]. Guilin: Guilin University of Electronic Technology, 2023. | |
28 | Desert Knowledge Australia Centre. Download Data. Alice Springs[EB/OL]. (2023-10-6) [2024-05-13]. http://dkasolarcentre.com.au/download. |
29 | 侯健敏, 孟莹, 李志, 等. 基于综合相关性指标与SA-BiGRU的综合能源系统多元负荷预测[J]. 电力建设, 2024, 45 (5): 118- 130. |
HOU Jianmin, MENG Ying, LI Zhi, et al. Multi-energy load forecasting in integrated energy systems based on comprehensive correlation index and SA-BiGRU network[J]. Electric Power Construction, 2024, 45 (5): 118- 130. | |
30 | WU H X, HU T G, LIU Y, et al. TimesNet: temporal 2D-variation modeling for general time series analysis[EB/OL]. (2022-10-5) [2024-8-6]. https://arxiv.org/abs/2210.02186v3. |
31 |
CHALLU C, OLIVARES K G, ORESHKIN B N, et al. NHITS: neural hierarchical interpolation for time series forecasting[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2023, 37 (6): 6989- 6997.
DOI |
32 |
ZHOU H Y, ZHANG S H, PENG J Q, et al. Informer: beyond efficient transformer for long sequence time-series forecasting[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35 (12): 11106- 11115.
DOI |
[1] | 潘鹏程, 韩文舜, 郭雪丽. 基于有源和无源阻尼协同控制的光伏直流升压汇集系统谐振抑制[J]. 中国电力, 2025, 58(3): 20-30. |
[2] | 王海军, 居蓉蓉, 董颖华. 基于时空关联特征与B-LSTM模型的分布式光伏功率区间预测[J]. 中国电力, 2024, 57(7): 74-80. |
[3] | 陈中飞, 赵越, 蔡秋娜, 张乔榆, 王泽林, 戴晓娟, 陈雨果. 基于净负荷预测误差统计的电力系统爬坡能力充裕度评估[J]. 中国电力, 2024, 57(5): 50-60. |
[4] | 徐一伦, 张彬桥, 黄婧, 谢枭, 王若昕, 沈丹青, 何丽娜, 杨凯帆. 考虑天气类型和相似日的IWPA-LSSVM光伏发电功率预测[J]. 中国电力, 2023, 56(2): 143-149. |
[5] | 苏向敬, 宇海波, 符杨, 田书欣, 李海瑜, 耿福海. 基于DALSTM和联合分位数损失的海上风电功率概率预测[J]. 中国电力, 2023, 56(11): 10-19. |
[6] | 张倩, 蒙飞, 李涛, 杨勇, 白鹭. 基于周期信息增强的Informer光伏发电功率预测[J]. 中国电力, 2023, 56(10): 186-193. |
[7] | 朱林, 韩涛, 董颖华, 余雅博, 薛玉龙. 基于时变因素的光伏发电系统可靠性评估[J]. 中国电力, 2023, 56(1): 158-165. |
[8] | 韩子颜, 王守相, 赵倩宇, 郑志杰. 计及分时电价的5 G基站光储系统容量优化配置方法[J]. 中国电力, 2022, 55(9): 8-15. |
[9] | 赵安军, 王鹏柱, 荆竞, 高之坤, 李旺. 考虑电动汽车影响的农村家庭新能源容量优化配置方法[J]. 中国电力, 2022, 55(8): 31-39,50. |
[10] | 颜湘武, 王晨光, 贾焦心, 马宏斌. 基于小交流信号的低压配电网中分布式光伏辅助调压控制策略[J]. 中国电力, 2022, 55(5): 134-142. |
[11] | 薛飞, 马鑫, 田蓓, 吴慧. 基于改进蜻蜓算法的光伏全局最大功率追踪[J]. 中国电力, 2022, 55(2): 131-137. |
[12] | 沙骏, 徐雨森, 刘冲冲, 冯定东, 胥峥, 臧海祥. 基于变分模态分解和分位数卷积-循环神经网络的短期风功率预测[J]. 中国电力, 2022, 55(12): 61-68. |
[13] | 申屠刚, 吴正骅, 王思家, 吴翔宇. 含光伏电站的电力系统低频振荡广域阻尼协同控制方法[J]. 中国电力, 2022, 55(12): 69-77. |
[14] | 李丰君, 王磊, 赵健, 张建宾, 张世尧, 田杨阳. 基于天气融合和LSTM网络的分布式光伏短期功率预测方法[J]. 中国电力, 2022, 55(11): 149-154. |
[15] | 庞传军, 张波, 余建明, 刘艳. 基于结构化负荷模型的电力负荷概率区间预测[J]. 中国电力, 2021, 54(9): 89-95. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||