中国电力 ›› 2025, Vol. 58 ›› Issue (12): 50-62.DOI: 10.11930/j.issn.1004-9649.202508045
• 协同海量分布式灵活性资源的韧性城市能源系统关键技术 • 上一篇
乔立1(
), 莫石1, 郭铭予2, 崔世常2(
), 张紫桐1, 王博1, 艾小猛2(
), 方家琨2(
), 曹元成2, 姚伟2, 文劲宇2
收稿日期:2025-08-20
修回日期:2025-11-06
发布日期:2025-12-27
出版日期:2025-12-28
作者简介:基金资助:
QIAO Li1(
), MO Shi1, GUO Mingyu2, CUI Shichang2(
), ZHANG Zitong1, WANG Bo1, AI Xiaomeng2(
), FANG Jiakun2(
), CAO Yuancheng2, YAO Wei2, WEN Jinyu2
Received:2025-08-20
Revised:2025-11-06
Online:2025-12-27
Published:2025-12-28
Supported by:摘要:
为充分挖掘分布式资源的灵活调度潜力,应对新能源大规模接入配电网带来的波动性挑战,提出了一种节点边际电价(distribution locational marginal price,DLMP)信号驱动的配电网分布式资源可定向内近似(orientated inner approximation,OIA)聚合优化调度方法。首先,考虑以最小化运营成本引导聚合方向,在OIA聚合过程中有选择性地牺牲少量可行域空间以获取更高质量的解,克服了现有基于最大内近似聚合方法追求可行域最大化而忽略了调度目标最优性的问题。同时,提出配电网运营商与负荷聚合商的双层协同运行优化框架,上层配电网运营商以最小化含配电网购电成本、弃风弃光成本的总运行成本为目标进行优化调度,并通过拉格朗日松弛计算DLMP,从空间和时间2个层面反映配电网的供需平衡状态和运行成本;下层负荷聚合商接收DLMP信号,以最小化代理用户用电成本为目标,在OIA聚合得到的集群可行域内更新电动汽车、变频空调、用户侧储能等分布式资源的用电计划。二者以DLMP信号为媒介进行协同优化,最终实现配电网安全经济运行与分布式资源灵活潜力挖掘的双重目标。基于IEEE 33节点系统的算例分析表明,所提方法有效引导了配电网负荷分布均衡,降低了负荷聚合商代理用户的用电成本,降低了配电网的网络损耗、节点电压偏移和运行成本。
乔立, 莫石, 郭铭予, 崔世常, 张紫桐, 王博, 艾小猛, 方家琨, 曹元成, 姚伟, 文劲宇. DLMP信号驱动的配电网分布式资源可定向内近似聚合调度方法[J]. 中国电力, 2025, 58(12): 50-62.
QIAO Li, MO Shi, GUO Mingyu, CUI Shichang, ZHANG Zitong, WANG Bo, AI Xiaomeng, FANG Jiakun, CAO Yuancheng, YAO Wei, WEN Jinyu. DLMP Signal-Driven Orientated Inner Approximation Aggregation Scheduling Method for Distributed Resources in Distribution Networks[J]. Electric Power, 2025, 58(12): 50-62.
| EV | 最大充电功率 Pmax/kW | 到站SOC | 预期SOC | 最大能量 Emax/(kW·h) | ||||
| EV1 | 6 | 0.4 | 0.6 | 11 | ||||
| EV2 | 7 | 0.3 | 0.7 | 20 |
表 1 两个电动汽车单体负荷的参数
Table 1 Differential parameters of two EVs
| EV | 最大充电功率 Pmax/kW | 到站SOC | 预期SOC | 最大能量 Emax/(kW·h) | ||||
| EV1 | 6 | 0.4 | 0.6 | 11 | ||||
| EV2 | 7 | 0.3 | 0.7 | 20 |
| 集群 | 数量/台 | ΔT/℃ | Pmax/kW | Pmin/kW | Tset/℃ | |||||
| 集群1(节点7) | 100 | [1.5, 2.5] | [3.5, 4.5] | 0 | [20, 26] | |||||
| 集群2(节点33) | 150 | [2.0, 3.0] | [3.0, 4.0] | 0 | [22, 24] |
表 2 空调负荷集群的差异化参数
Table 2 Differential parameters of air conditioning load cluster
| 集群 | 数量/台 | ΔT/℃ | Pmax/kW | Pmin/kW | Tset/℃ | |||||
| 集群1(节点7) | 100 | [1.5, 2.5] | [3.5, 4.5] | 0 | [20, 26] | |||||
| 集群2(节点33) | 150 | [2.0, 3.0] | [3.0, 4.0] | 0 | [22, 24] |
| 集群 | 数量/台 | 到达时刻 | 离开时刻 | 到达SOC | 预期SOC | |||||
| 集群1 (节点12) | 30, 20, 50 | 09:00, 13:00, 20:00 | 19:00, 18:00, 07:00 | [0.15, 0.35] | [0.8, 1.0] | |||||
| 集群2 (节点27) | 80, 60, 60 | 01:00, 08:00, 20:00 | 07:00, 21:00, 03:00 | [0.10, 0.30] | [0.7, 1.0] |
表 3 电动汽车集群的差异化参数
Table 3 Differential parameters of EV load cluster
| 集群 | 数量/台 | 到达时刻 | 离开时刻 | 到达SOC | 预期SOC | |||||
| 集群1 (节点12) | 30, 20, 50 | 09:00, 13:00, 20:00 | 19:00, 18:00, 07:00 | [0.15, 0.35] | [0.8, 1.0] | |||||
| 集群2 (节点27) | 80, 60, 60 | 01:00, 08:00, 20:00 | 07:00, 21:00, 03:00 | [0.10, 0.30] | [0.7, 1.0] |
| 数量 | Emax/(kW·h) | Pmax/kW | 初始SOC | 最小SOC | ||||
| 20 | [100, 120] | [20, 30] | [0.1, 0.3] | 0.1 |
表 4 用户侧储能集群的差异化参数
Table 4 Differential parameters of energy storage load cluster
| 数量 | Emax/(kW·h) | Pmax/kW | 初始SOC | 最小SOC | ||||
| 20 | [100, 120] | [20, 30] | [0.1, 0.3] | 0.1 |
| 场景 | 负荷聚合商 | 配电网运营商 | 收敛计算 时间/s | |||||||||||||||||
| EV集群用电 成本/元 | TCL集群用电 成本/元 | ES集群用电 成本/元 | 总成本/ 元 | 有功购电 成本/元 | 无功购电 成本/元 | 弃风弃光 成本/元 | 总成本/ 元 | |||||||||||||
| 1 | 0 | 0 | ||||||||||||||||||
| 2 | 原始电价 | 0 | 215.815 | |||||||||||||||||
| DLMP | 131 | |||||||||||||||||||
| 3 | 原始电价 | –928 | 0 | 37.295 | ||||||||||||||||
| DLMP | 0 | |||||||||||||||||||
| 4 | 原始电价 | 0 | 64.927 | |||||||||||||||||
| DLMP | 54 | |||||||||||||||||||
表 5 各优化场景计算结果对比
Table 5 Comparison of calculation results under various optimization scenarios
| 场景 | 负荷聚合商 | 配电网运营商 | 收敛计算 时间/s | |||||||||||||||||
| EV集群用电 成本/元 | TCL集群用电 成本/元 | ES集群用电 成本/元 | 总成本/ 元 | 有功购电 成本/元 | 无功购电 成本/元 | 弃风弃光 成本/元 | 总成本/ 元 | |||||||||||||
| 1 | 0 | 0 | ||||||||||||||||||
| 2 | 原始电价 | 0 | 215.815 | |||||||||||||||||
| DLMP | 131 | |||||||||||||||||||
| 3 | 原始电价 | –928 | 0 | 37.295 | ||||||||||||||||
| DLMP | 0 | |||||||||||||||||||
| 4 | 原始电价 | 0 | 64.927 | |||||||||||||||||
| DLMP | 54 | |||||||||||||||||||
图 11 场景2、3、4下负荷聚合商和配电网运营商的总成本随迭代次数的变化
Fig.11 Variation of total costs of load aggregators and distribution network operators with the number of iterations under scenarios 2, 3, and 4
| 场景 | 计算时间/s | 迭代次数 | DLMP收敛平方差和 | |||
| 2 | 215.815 | 8 | ||||
| 3 | 37.295 | 4 | ||||
| 4 | 64.927 | 4 |
表 6 场景2、3、4下计算时间及迭代次数对比
Table 6 Comparison of calculation time and iteration times under scenarios 2, 3 and 4
| 场景 | 计算时间/s | 迭代次数 | DLMP收敛平方差和 | |||
| 2 | 215.815 | 8 | ||||
| 3 | 37.295 | 4 | ||||
| 4 | 64.927 | 4 |
| 1 |
葛鑫鑫, 付志扬, 徐飞, 等. 面向新型电力系统的虚拟电厂商业模式与关键技术[J]. 电力系统自动化, 2022, 46 (18): 129- 146.
DOI |
|
GE Xinxin, FU Zhiyang, XU Fei, et al. Business model and key technologies of virtual power plant for new power system[J]. Automation of Electric Power Systems, 2022, 46 (18): 129- 146.
DOI |
|
| 2 |
李彦晨, 贾燕冰, 谢栋, 等. 计及电能质量影响的配电网风储优化配置[J]. 电网技术, 2023, 47 (6): 2391- 2404.
DOI |
|
LI Yanchen, JIA Yanbing, XIE Dong, et al. Optimal configuration of wind turbine and energy storage system in distribution network considering influence of power quality[J]. Power System Technology, 2023, 47 (6): 2391- 2404.
DOI |
|
| 3 |
杨涛, 周洪, 魏凤, 等. 新型电力系统下的电网安全挑战与对策研究[J]. 电力信息与通信技术, 2024, 22 (8): 18- 26.
DOI |
|
YANG Tao, ZHOU Hong, WEI Feng, et al. Challenges and countermeasures of grid security towards a new type of power system[J]. Electric Power Information and Communication Technology, 2024, 22 (8): 18- 26.
DOI |
|
| 4 |
李鹏, 刘嘉彦, 李佳蔚, 等. 考虑光伏与电动汽车充电站协同的配电网电压控制方法[J]. 电力科学与技术学报, 2024, 39 (6): 121- 130.
DOI |
|
LI Peng, LIU Jiayan, LI Jiawei, et la. A voltage control method for distribution networks considering photovoltaic and electric vehicle charging station coordination[J]. Journal of Electric Power Science and Technology, 2024, 39 (6): 121- 130.
DOI |
|
| 5 |
康田园, 刘科研, 贾东梨, 等. 计及分布式电源出力不确定性的虚拟电厂鲁棒优化调度[J]. 电力信息与通信技术, 2024, 22 (2): 16- 24.
DOI |
|
KANG Yuantan, LIU Keyan, JIA Dongli, et al. Robust optimal scheduling of virtual power plant considering output uncertainty of distributed generation[J]. Electric Power Information and Communication Technology, 2024, 22 (2): 16- 24.
DOI |
|
| 6 |
王永恒, 何玮珊, 李静静, 等. 基于5G NR-U的分布式新能源采集调控策略[J]. 电力信息与通信技术, 2024, 22 (4): 86- 91.
DOI |
|
WANG Yongheng, HE Weishan, LI Jingjing, et al. Acquisition and regulation strategy of distributed new energy based on 5G NR-U[J]. Electric Power Information and Communication Technology, 2024, 22 (4): 86- 91.
DOI |
|
| 7 |
裴林, 黄成, 杨啸, 等. 考虑隐私保护和去中心化的分布式能源交易模式研究[J]. 电力系统保护与控制, 2024, 52 (2): 143- 154.
DOI |
|
PEI Lin, HUANG Cheng, YANG Xiao, et al. A distributed energy trading model considering privacy protection and decentralization[J]. Power System Protection and Control, 2024, 52 (2): 143- 154.
DOI |
|
| 8 |
陈心宜, 胡秦然, 石庆鑫, 等. 新型电力系统居民分布式资源管理综述[J]. 电力系统自动化, 2024, 48 (5): 157- 175.
DOI |
|
CHEN Xinyi, HU Qinran, SHI Qingxin, et al. Review on residential distributed energy resource management in new power system[J]. Automation of Electric Power Systems, 2024, 48 (5): 157- 175.
DOI |
|
| 9 |
陈国平, 董昱, 梁志峰. 能源转型中的中国特色新能源高质量发展分析与思考[J]. 中国电机工程学报, 2020, 40 (17): 5493- 5506.
DOI |
|
CHEN Guoping, DONG Yu, LIANG Zhifeng. Analysis and reflection on high-quality development of new energy with Chinese characteristics in energy transition[J]. Proceedings of the CSEE, 2020, 40 (17): 5493- 5506.
DOI |
|
| 10 | 翟苏巍, 李银银, 杜凡, 等. 考虑海量分布式能源接入的配电网分布式无功控制策略[J]. 中国电力, 2024, 57 (8): 138- 144. |
| ZHAI Suwei, LI Yinyin, DU Fan, et al. Distributed reactive power control strategy of distribution network considering massive distributed energy access[J]. Electric Power, 2024, 57 (8): 138- 144. | |
| 11 | 孙改平. 新型电力系统下考虑灵活性支撑的分布式能源聚合优化运行研究[D]. 上海: 上海交通大学, 2022. |
| SUN Gaiping. Research on distributed energy resource aggregation and optimal operation of novel power system considering flexibility support[D]. Shanghai: Shanghai Jiao Tong University, 2022. | |
| 12 |
翟哲, 陈梓煜, 刘起兴, 等. 计及风险管理的分布式资源聚合商电力市场交易模型[J]. 中国电力, 2025, 58 (6): 56- 66, 155.
DOI |
|
ZHAI Zhe, CHEN Ziyu, LIU Qixing, et al. An electricity market trading model for distributed resource aggregators considering risk management[J]. Electric Power, 2025, 58 (6): 56- 66, 155.
DOI |
|
| 13 |
陈璨, 王晶, 于宗民, 等. 配电网自治单元规划研究综述与展望[J]. 中国电力, 2023, 56 (12): 9- 19.
DOI |
|
CHEN Can, WANG Jing, YU Zongmin, et al. Review and outlook of autonomous unit planning of distribution network[J]. Electric Power, 2023, 56 (12): 9- 19.
DOI |
|
| 14 |
HAN D L, JIAN J B, YANG L F. Outer approximation and outer-inner approximation approaches for unit commitment problem[J]. IEEE Transactions on Power Systems, 2014, 29 (2): 505- 513.
DOI |
| 15 |
YAN D X, MA C B, CHEN Y. Distributed coordination of charging stations considering aggregate EV power flexibility[J]. IEEE Transactions on Sustainable Energy, 2023, 14 (1): 356- 370.
DOI |
| 16 |
WEN Y L, HU Z C, YOU S, et al. Aggregate feasible region of DERs: exact formulation and approximate models[J]. IEEE Transactions on Smart Grid, 2022, 13 (6): 4405- 4423.
DOI |
| 17 | BAROT S, TAYLOR J A. A concise, approximate representation of a collection of loads described by polytopes[J]. International Journal of Electrical Power & Energy Systems, 2017, 84, 55- 63. |
| 18 |
ZHAO L, ZHANG W, HAO H, et al. A geometric approach to aggregate flexibility modeling of thermostatically controlled loads[J]. IEEE Transactions on Power Systems, 2017, 32 (6): 4721- 4731.
DOI |
| 19 | 李晓露, 徐婉云, 柳劲松, 等. 考虑时序相关性的需求侧资源可调节功率域聚合方法[J]. 电力系统保护与控制, 2024, 52 (15): 58- 68. |
| LI Xiaolu, XU Wanyun, LIU Jinsong, et al. Adjustable power domain aggregation method for demand-side resourcesconsidering temporal correlation[J]. Power System Protection and Control, 2024, 52 (15): 58- 68. | |
| 20 |
赵文猛, 黄豪江, 朱建全, 等. 内近似约束空间整合的灵活性资源集群响应方法[J]. 电网技术, 2023, 47 (7): 2621- 2632.
DOI |
|
ZHAO Wenmeng, HUANG Haojiang, ZHU Jianquan, et al. Flexible resource cluster response based on inner approximate and constraint space integration[J]. Power System Technology, 2023, 47 (7): 2621- 2632.
DOI |
|
| 21 |
李英量, 孙楠, 王德明, 等. 含分布式储能系统的交直流配电网动态故障恢复策略[J]. 电力系统保护与控制, 2024, 52 (18): 179- 187.
DOI |
|
LI Yingliang, SUN Nan, WANG Deming, et al. A dynamic fault recovery strategy for an AC/DC distribution network with distributed energy storage system[J]. Power System Protection and Control, 2024, 52 (18): 179- 187.
DOI |
|
| 22 | XU D L, XU J J, QIAN C, et al. A pseudo-measurement modelling strategy for active distribution networks considering uncertainty of DGs[J]. Protection and Control of Modern Power Systems, 2024, 9 (5): 1- 15. |
| 23 |
张粒子, 丛野, 陶文斌, 等. 电力现货市场环境下提供位置信号电价机制的协同作用[J]. 中国电力, 2020, 53 (9): 9- 18, 46.
DOI |
|
ZHANG Lizi, CONG Ye, TAO Wenbin, et al. Coordination functions of electricity price providing locational signals under the circumstance of electricity spot market[J]. Electric Power, 2020, 53 (9): 9- 18, 46.
DOI |
|
| 24 |
陈泽宇, 陈艳波. 考虑储能循环寿命的市场出清机制及电价成因量化分析[J]. 电力自动化设备, 2025, 45 (3): 40- 49, 63.
DOI |
|
CHEN Zeyu, CHEN Yanbo. Market clearing mechanism considering cycle life of energy storage and quantitative analysis of locational marginal price forming cause[J]. Electric Power Automation Equipment, 2025, 45 (3): 40- 49, 63.
DOI |
|
| 25 |
刘一欣, 张帅, 郭力, 等. 计及电能量-备用耦合的配电网与光储充电站协调优化调度方法[J]. 电网技术, 2024, 48 (8): 3175- 3185.
DOI |
|
LIU Yixin, ZHANG Shuai, GUO Li, et al. Coordinated optimization scheduling method for distribution networks and photovoltaic storage charging stations considering the coupling of energy and reserve[J]. Power System Technology, 2024, 48 (8): 3175- 3185.
DOI |
|
| 26 |
陈星宇, 张亚超, 黄张浩, 等. 考虑节点边际电价的配电网与多微电网双层鲁棒经济调度[J]. 电力自动化设备, 2023, 43 (11): 51- 58.
DOI |
|
CHEN Xingyu, ZHANG Yachao, HUANG Zhanghao, et al. Bi-level robust economic dispatch of distribution network and multiple microgrids considering locational marginal price[J]. Electric Power Automation Equipment, 2023, 43 (11): 51- 58.
DOI |
|
| 27 | 刘伟佳, 吴秋伟, 文福拴, 等. 电动汽车和可控负荷参与配电系统阻塞管理的市场机制[J]. 电力系统自动化, 2014, 38 (24): 26- 33, 101. |
| LIU Weijia, WU Qiuwei, WEN Fushuan, et al. A market mechanism for participation of electric vehicles and dispatchable loads in distribution system congestion management[J]. Automation of Electric Power Systems, 2014, 38 (24): 26- 33, 101. | |
| 28 |
赵一奇, 郭力, 刘一欣, 等. 计及阻塞管理的交直流柔性配电网协调优化调度方法[J]. 电网技术, 2021, 45 (2): 622- 633.
DOI |
|
ZHAO Yiqi, GUO Li, LIU Yixin, et al. Coordinated optimal scheduling method of AC/DC flexible distribution network considering congestion management[J]. Power System Technology, 2021, 45 (2): 622- 633.
DOI |
|
| 29 |
BAI L Q, WANG J H, WANG C S, et al. Distribution locational marginal pricing (DLMP) for congestion management and voltage support[J]. IEEE Transactions on Power Systems, 2018, 33 (4): 4061- 4073.
DOI |
| 30 |
朱佳男, 艾芊, 李嘉媚. 基于分布鲁棒优化的广义共享储能容量配置方法[J]. 电力系统自动化, 2024, 48 (8): 185- 194.
DOI |
|
ZHU Jianan, AI Qian, LI Jiamei. Capacity allocation method for generalized shared energy storage based on distributionally robust optimization[J]. Automation of Electric Power Systems, 2024, 48 (8): 185- 194.
DOI |
| [1] | 刘航, 申皓, 纪陵, 钟永洁, 陈嘉瑞, 余洋. 计及最大需量基于改进RTN模型的短流程钢铁企业双层优化调峰策略[J]. 中国电力, 2025, 58(8): 118-129. |
| [2] | 孔令国, 田杨进, 康建东, 方磊, 刘闯, 蔡国伟. 考虑多电解槽协同的海上独立能源岛不确定性双层优化配置[J]. 中国电力, 2025, 58(7): 80-90, 104. |
| [3] | 翟哲, 陈梓煜, 刘起兴, 梁彦杰, 李智勇. 计及风险管理的分布式资源聚合商电力市场交易模型[J]. 中国电力, 2025, 58(6): 56-66, 155. |
| [4] | 周飞航, 王灏, 王海利, 王萌, 金耀杰, 李重春, 张忠德, 王鹏. 基于多智能体强化学习的电-碳-绿证耦合市场下多市场主体行为研究[J]. 中国电力, 2025, 58(4): 44-55. |
| [5] | 王杰, 郑飞, 张鹏城, 陈露东, 高华, 蒙镜蓉. 基于数据驱动的高比例新能源配电网规划模型[J]. 中国电力, 2025, 58(3): 175-182. |
| [6] | 鲍红焉, 刘吉成, 刘子毅, 孙嘉康. 考虑电氢混合储能容量配置的主动配电网双层优化模型[J]. 中国电力, 2025, 58(10): 27-38. |
| [7] | 王德顺, 雷洁, 胡安平, 王冰, 冯鑫振, 王志辉. 基于多目标双层优化的台区分布式电源选址定容方法[J]. 中国电力, 2025, 58(10): 136-146. |
| [8] | 鲁玲, 苑涛, 杨波, 李欣, 鲁洋, 蒲秋平, 张鑫. 计及㶲效率和多重不确定性的区域综合能源系统双层优化[J]. 中国电力, 2025, 58(1): 128-140. |
| [9] | 张旭, 王淳, 胡奕涛, 陈锐凯, 刘昆, 郭志东, 钟俊勋. 面向短时过载及长期轻载的配变侧储能配置与调度双层优化[J]. 中国电力, 2025, 58(1): 174-184. |
| [10] | 陈奇芳, 李若凡, 夏明超, 吴迪, 邵尹池. 计及多维性能评估的新型配电网光伏选址定容方法[J]. 中国电力, 2024, 57(10): 172-178, 207. |
| [11] | 周健, 冯楠, 季怡萍, 冯煜尧, 王帅, 李少岩. 考虑源网协同支撑作用的含新能源电力系统网架重构决策优化方法[J]. 中国电力, 2024, 57(10): 150-157. |
| [12] | 王世杰, 冯天波, 孙宁, 何可, 李嘉文, 杨程, 崔昊杨. 考虑电-气-热耦合和需求响应的虚拟电厂优化调度策略[J]. 中国电力, 2024, 57(1): 101-114. |
| [13] | 薛贵元, 吴垠, 诸晓骏, 谈健, 明昊. 计及用能权配额约束的发电商竞价策略双层优化方法[J]. 中国电力, 2023, 56(5): 51-61. |
| [14] | 卢炳文, 魏震波, 魏平桉, 郭毅, 胡蓉. 考虑多重区间不确定性的用户侧综合能源系统双层优化配置[J]. 中国电力, 2022, 55(3): 193-202. |
| [15] | 谭鸣骢, 王玲玲, 蒋传文, 刘航航, 巫里尔沙, 唐炯. 考虑负荷聚合商调节潜力的需求响应双层优化模型[J]. 中国电力, 2022, 55(10): 32-44. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||


AI小编