中国电力 ›› 2025, Vol. 58 ›› Issue (12): 50-62.DOI: 10.11930/j.issn.1004-9649.202508045

• 协同海量分布式灵活性资源的韧性城市能源系统关键技术 • 上一篇    

DLMP信号驱动的配电网分布式资源可定向内近似聚合调度方法

乔立1(), 莫石1, 郭铭予2, 崔世常2(), 张紫桐1, 王博1, 艾小猛2(), 方家琨2(), 曹元成2, 姚伟2, 文劲宇2   

  1. 1. 国网湖北省电力有限公司经济技术研究院,湖北 武汉 430200
    2. 强电磁技术全国重点实验室(华中科技大学),湖北 武汉 430074
  • 收稿日期:2025-08-20 修回日期:2025-11-06 发布日期:2025-12-27 出版日期:2025-12-28
  • 作者简介:
    乔立(1988),男,硕士,高级工程师,从事短路电流控制、大电网安全稳定分析等研究,E-mail:604178648@qq.com
    崔世常(1994),男,通信作者,博士,从事需求侧分布式优化调度、博弈与优化算法等研究,E-mail:shichang_cui@hust.edu.cn
    艾小猛(1986),男,教授,博士生导师,从事鲁棒优化理论在综合能源系统中的应用、可再生能源并网优化运行等研究,E-mail:xiaomengai@hust.edu.cn
    方家琨(1985),男,教授,博士生导师,从事电力能源系统建模、分析和优化控制等研究,E-mail:jfa@hust.edu.cn
  • 基金资助:
    国家电网有限公司科技项目(SGHBJYOOPSJS2400060K);国家自然科学基金资助项目(52207108)。

DLMP Signal-Driven Orientated Inner Approximation Aggregation Scheduling Method for Distributed Resources in Distribution Networks

QIAO Li1(), MO Shi1, GUO Mingyu2, CUI Shichang2(), ZHANG Zitong1, WANG Bo1, AI Xiaomeng2(), FANG Jiakun2(), CAO Yuancheng2, YAO Wei2, WEN Jinyu2   

  1. 1. State Grid Hubei Electric Power Company Economic and Technical Research Institute, Wuhan 430200, China
    2. State Key Laboratory of Advanced Electromagnetic Technology (Huazhong University of Science and Technology), Wuhan 430074, China
  • Received:2025-08-20 Revised:2025-11-06 Online:2025-12-27 Published:2025-12-28
  • Supported by:
    This work is supported by Science and Technology Project of SGCC (No.SGHBJYOOPSJS2400060K), National Natural Science Foundation of China (No.52207108).

摘要:

为充分挖掘分布式资源的灵活调度潜力,应对新能源大规模接入配电网带来的波动性挑战,提出了一种节点边际电价(distribution locational marginal price,DLMP)信号驱动的配电网分布式资源可定向内近似(orientated inner approximation,OIA)聚合优化调度方法。首先,考虑以最小化运营成本引导聚合方向,在OIA聚合过程中有选择性地牺牲少量可行域空间以获取更高质量的解,克服了现有基于最大内近似聚合方法追求可行域最大化而忽略了调度目标最优性的问题。同时,提出配电网运营商与负荷聚合商的双层协同运行优化框架,上层配电网运营商以最小化含配电网购电成本、弃风弃光成本的总运行成本为目标进行优化调度,并通过拉格朗日松弛计算DLMP,从空间和时间2个层面反映配电网的供需平衡状态和运行成本;下层负荷聚合商接收DLMP信号,以最小化代理用户用电成本为目标,在OIA聚合得到的集群可行域内更新电动汽车、变频空调、用户侧储能等分布式资源的用电计划。二者以DLMP信号为媒介进行协同优化,最终实现配电网安全经济运行与分布式资源灵活潜力挖掘的双重目标。基于IEEE 33节点系统的算例分析表明,所提方法有效引导了配电网负荷分布均衡,降低了负荷聚合商代理用户的用电成本,降低了配电网的网络损耗、节点电压偏移和运行成本。

关键词: 新型配电网, 分布式资源, 聚合优化, 可定向内近似, 节点边际电价, 双层优化

Abstract:

To fully tap the flexible scheduling potential of distributed resources and address the volatility challenges brought by the large-scale integration of new energy into the distribution networks, this study proposes a distribution locational marginal price (DLMP) signal-driven orientated inner approximation (OIA)-based aggregation optimization scheduling method for distributed resources in distribution networks. Firstly, the aggregation direction is guided by minimizing the operating cost, and a small amount of feasible region space is selectively sacrificed during the OIA aggregation process to obtain higher-quality solutions, which overcomes the limitation of existing maximum inner approximation-based aggregation methods that pursue the maximization of feasible regions while ignoring the optimality of scheduling objectives. Meanwhile, a bi-level cooperative operation optimization framework between distribution network operators and load aggregators is proposed: the upper-level distribution network operator conducts the optimization scheduling with the goal of minimizing the total operation cost, including the power purchase cost of the distribution network and the wind/solar curtailment costs, and calculates the DLMP through Lagrange relaxation, which reflects the supply-demand balance status and operating costs of the distribution network from both spatial and temporal dimensions; the lower-level load aggregator receives the DLMP signal and updates the power consumption plans of distributed resources such as electric vehicles, variable-frequency air conditioners, and user-side energy storage within the cluster feasible region obtained by OIA aggregation, aiming to minimize the power consumption cost of agent users. The two parties use the DLMP signals as the medium for cooperative optimization, ultimately achieving the dual goals of secure and economic operation of distribution network and tapping the flexible potential of distributed resources. Case studies based on the IEEE 33-bus system show that the proposed method effectively guides the balances load distribution of the distribution network, reduces the power consumption cost of users represented by load aggregators, and lowers the network loss, node voltage deviation, and operating cost of the distribution network.

Key words: new distribution network, distributed resources, aggregation optimization, orientated inner approximation, distribution locational marginal price, bi-level optimization


AI


AI小编
您好!我是《中国电力》AI小编,有什么可以帮您的吗?