[1] 谭显东, 刘俊, 徐志成, 等. “双碳”目标下“十四五”电力供需形势[J]. 中国电力, 2021, 54(5): 1–6 TAN Xiandong, LIU Jun, XU Zhicheng, et al. Power supply and demand balance during the 14 th five-year plan period under the goal of carbon emission peak and carbon neutrality[J]. Electric Power, 2021, 54(5): 1–6 [2] 辛保安, 单葆国, 李琼慧, 等. “双碳”目标下“能源三要素”再思考[J]. 中国电机工程学报, 2022, 42(9): 3117–3126 XIN Baoan, SHAN Baoguo, LI Qionghui, et al. Rethinking of the “three elements of energy” toward carbon peak and carbon neutrality[J]. Proceedings of the CSEE, 2022, 42(9): 3117–3126 [3] 汪春江, 孙建军, 宫金武, 等. 直驱风机机网侧变流器统一建模及其弱电网下稳定性研究[J]. 电测与仪表, 2022, 59(10): 87–92 WANG Chunjiang, SUN Jianjun, GONG Jinwu, et al. Unified modeling of grid-side converter of direct-driven fan and its stability under weak current grid[J]. Electrical Measurement & Instrumentation, 2022, 59(10): 87–92 [4] 赵书强, 高瑞鑫, 邵冰冰, 等. 多光伏发电单元并入弱交流电网系统的站内/站网次同步振荡特性分析[J]. 电力建设, 2021, 42(12): 49–58 ZHAO Shuqiang, GAO Ruixin, SHAO Bingbing, et al. Inside-plant and plant-grid sub-synchronous oscillation characteristics analysis of multiple PV generation units connected to a weak AC power grid[J]. Electric Power Construction, 2021, 42(12): 49–58 [5] 孙焜, 姚伟, 周毅, 等. 基于SISO序阻抗的直驱风场经柔直输电系统中频振荡机理分析及抑制[J]. 中国电机工程学报, 2023, 43(2): 442–454 SUN Kun, YAO Wei, ZHOU Yi, et al. Mechanism analysis and suppression of intermediate frequency oscillation of direct-driven wind field through flexible transmission system based on SISO sequence impedance[J]. Proceedings of the CSEE, 2023, 43(2): 442–454 [6] 潘鹏宇, 胡海涛, 肖冬华, 等. 高速列车变流器“扫频式”dq阻抗测量中的频率耦合干扰机理及抑制策略[J]. 电工技术学报, 2022, 37(4): 990–999, 1009 PAN Pengyu, HU Haitao, XIAO Donghua, et al. Frequency coupling interference mechanism and suppression strategy for frequency-sweeping-based dq impedance measurement of high-speed train converter[J]. Transactions of China Electrotechnical Society, 2022, 37(4): 990–999, 1009 [7] 李振垚, 甘德强, 栾某德, 等. 基于全状态模型的自同步电压源并网系统频率稳定分析[J]. 中国电力, 2023, 56(5): 182–192 LI Zhenyao, GAN Deqiang, LUAN Moude, et al. Frequency stability analysis based on full state model in autonomous-synchronization voltage source interfaced power system[J]. Electric Power, 2023, 56(5): 182–192 [8] 张成, 赵涛, 朱爱华, 等. 提高弱电网下并网逆变器稳定性的复合补偿策略[J]. 智慧电力, 2021, 49(5): 42–47, 76 ZHANG Cheng, ZHAO Tao, ZHU Aihua, et al. Composite compensation strategy for improving stability of grid connected inverter in weak current network[J]. Smart Power, 2021, 49(5): 42–47, 76 [9] 刘乐, 同向前, 杨树德, 等. 提高弱电网下逆变器稳定性的前馈控制策略[J]. 电力电子技术, 2019, 53(1): 65–68 LIU Le, TONG Xiangqian, YANG Shude, et al. A feedforward control strategy for inverter to improve its stability in weak grid[J]. Power Electronics, 2019, 53(1): 65–68 [10] 杨树德, 同向前, 尹军, 等. 增强并网逆变器对电网阻抗鲁棒稳定性的改进前馈控制方法[J]. 电工技术学报, 2017, 32(10): 222–230, 240 YANG Shude, TONG Xiangqian, YIN Jun, et al. An improved grid voltage feedforward strategy for grid-connected inverter to achieve high robust stability against grid-impedance variation[J]. Transactions of China Electrotechnical Society, 2017, 32(10): 222–230, 240 [11] 赵涛, 朱爱华, 季宁一, 等. 准比例谐振与电压前馈控制的并网系统研究[J]. 电力电子技术, 2021, 55(5): 96–100 ZHAO Tao, ZHU Aihua, JI Ningyi, et al. Research on grid connected system based on quasi proportional resonance and voltage feed-forward control[J]. Power Electronics, 2021, 55(5): 96–100 [12] 王翰文, 曾成碧, 苗虹. 基于多谐振电网电压前馈的并网逆变器相位补偿算法研究[J]. 电力系统保护与控制, 2021, 49(18): 81–89 WANG Hanwen, ZENG Chengbi, MIAO Hong. A phase compensation algorithm of a grid-connected inverter based on a feedforward multi-resonant grid voltage[J]. Power System Protection and Control, 2021, 49(18): 81–89 [13] 涂春鸣, 高家元, 赵晋斌, 等. 弱电网下具有定稳定裕度的并网逆变器阻抗重塑分析与设计[J]. 电工技术学报, 2020, 35(6): 1327–1335 TU Chunming, GAO Jiayuan, ZHAO Jinbin, et al. Analysis and design of grid-connected inverter impedance remodeling with fixed stability margin in weak grid[J]. Transactions of China Electrotechnical Society, 2020, 35(6): 1327–1335 [14] 曹子恒, 肖先勇, 李媛, 等. 弱电网下LCL型并网逆变器的自适应改进前馈控制策略[J]. 高电压技术, 2020, 46(5): 1560–1570 CAO Ziheng, XIAO Xianyong, LI Yuan, et al. Adaptive novel feed-forward control strategy for LCL type grid-connected inverters in the weak grid[J]. High Voltage Engineering, 2020, 46(5): 1560–1570 [15] 李建文, 曹久辉, 焦衡, 等. 弱电网下并网逆变器的相位裕度补偿方法[J]. 电力科学与工程, 2018, 34(11): 8–13 LI Jianwen, CAO Jiuhui, JIAO Heng, et al. Phase margin compensation method for grid-connected inverter under weak grid[J]. Electric Power Science and Engineering, 2018, 34(11): 8–13 [16] WANG X F, BLAABJERG F, LISERRE M, et al. An active damper for stabilizing power-electronics-based AC systems[J]. IEEE Transactions on Power Electronics, 2014, 29(7): 3318–3329. [17] 谢志为, 陈燕东, 伍文华, 等. 弱电网下多逆变器并网系统的全局高频振荡抑制方法[J]. 电工技术学报, 2020, 35(4): 885–895 XIE Zhiwei, CHEN Yandong, WU Wenhua, et al. A global high-frequency oscillation suppression method for multi-inverter grid-connected system in weak grid[J]. Transactions of China Electrotechnical Society, 2020, 35(4): 885–895 [18] 滕宇, 王学华, 余辉, 等. 提高LCL型并网逆变器对电网阻抗鲁棒性的阻抗调节方法[J]. 中国电机工程学报, 2015, 35(增刊1): 197–204 TENG Yu, WANG Xuehua, YU Hui, et al. A grid impedance shaping method to improve robustness of LCL-type grid-connected inverter against grid impedance variation[J]. Proceedings of the CSEE, 2015, 35(S1): 197–204 [19] 胡伟, 周友斌, 杜镇安, 等. 多并网逆变器系统谐振抑制策略[J]. 电力系统保护与控制, 2017, 45(14): 45–50 HU Wei, ZHOU Youbin, DU Zhenan, et al. Research on resonance suppression strategy of system with multiple grid-connected inverters[J]. Power System Protection and Control, 2017, 45(14): 45–50 [20] 杨思为, 张兴, 毛旺, 等. 弱电网下级联H桥光伏并网逆变器稳定性分析[J]. 太阳能学报, 2022, 43(1): 398–405 YANG Siwei, ZHANG Xing, MAO Wang, et al. Stability analysis of cascaded H-bridge photovoltaic grid-connected inverter under weak current network[J]. Acta Energiae Solaris Sinica, 2022, 43(1): 398–405 [21] 甄远伟, 侯运昌, 沙琮田, 等. 比例重复控制在有源电力滤波器中的应用[J]. 电力电子技术, 2020, 54(10): 99–102 ZHEN Yuanwei, HOU Yunchang, SHA Congtian, et al. Application of proportional repetitive controller in active power filter[J]. Power Electronics, 2020, 54(10): 99–102 [22] SONG Y P, NIAN H. Enhanced grid-connected operation of DFIG using improved repetitive control under generalized harmonic power grid[J]. IEEE Transactions on Energy Conversion, 2015, 30(3): 1019–1029. [23] ROHOUMA W, ZANCHETTA P, WHEELER P W, et al. A four-leg matrix converter ground power unit with repetitive voltage control[J]. IEEE Transactions on Industrial Electronics, 2015, 62(4): 2032–2040. [24] JI C, ZANCHETTA P, CARASTRO F, et al. Repetitive control for high-performance resonant pulsed power supply in radio frequency applications[J]. IEEE Transactions on Industry Applications, 2014, 50(4): 2660–2670. [25] 高家元, 肖凡, 姜飞, 等. 弱电网下具有新型PLL结构的并网逆变器阻抗相位重塑控制[J]. 中国电机工程学报, 2020, 40(20): 6682–6694 GAO Jiayuan, XIAO Fan, JIANG Fei, et al. Grid-connected inverter impedance phase reshaping control with novel PLL structure in weak grid[J]. Proceedings of the CSEE, 2020, 40(20): 6682–6694 [26] 李雨果, 易皓, 姜鑫, 等. 极弱电网下新能源跟网逆变器低频振荡的机理探究与暂态无功过补稳定性提升策略[J]. 中国电机工程学报, 2023, 43(2): 482–496 LI Yuguo, YI Hao, JIANG Xin, et al. Mechanism of low-frequency oscillation of new energy grid-following inverter in extremely weak power grid and strategy for improving transient reactive power compensation stability[J]. Proceedings of the CSEE, 2023, 43(2): 482–496 [27] 杨树德, 李旺, 张新闻, 等. 一种提高变流器弱电网适应能力的虚拟阻抗控制策略[J/OL]. 电源学报: 1–14[2023-02-21]http: //kns. cnki. net/kcms/detail/12.1420. TM. 20211014.1354. 002. html. YANG Shude, LI Wang, ZHANG Xinwen, et al. A virtual-impedance based control strategy for improving the adaptability of converter to weak grid[J/OL]. Journal of Power Supply: 1–14[2023-02-21]http: //kns. cnki. net/kcms/detail/12.1420. TM. 20211014.1354. 002. html.
|