[1] 别朝红, 王旭, 胡源. 能源互联网规划研究综述及展望[J]. 中国电机工程学报, 2017, 37(22): 6445–6462, 6757 BIE Zhaohong, WANG Xu, HU Yuan. Review and prospect of planning of energy Internet[J]. Proceedings of the CSEE, 2017, 37(22): 6445–6462, 6757 [2] 金晨, 任大伟, 肖晋宇, 等. 支撑碳中和目标的电力系统源-网-储灵活性资源优化规划[J]. 中国电力, 2021, 54(8): 164–174 JIN Chen, REN Dawei, XIAO Jinyu, et al. Optimization planning on power system supply-grid-storage flexibility resource for supporting the “carbon neutrality” target of China[J]. Electric Power, 2021, 54(8): 164–174 [3] 郭琦, 卢远宏. 新型电力系统的建模仿真关键技术及展望[J]. 电力系统自动化, 2022, 46(10): 18–32 GUO Qi, LU Yuanhong. Key technologies and prospects of modeling and simulation of new power system[J]. Automation of Electric Power Systems, 2022, 46(10): 18–32 [4] 黄英, 刘宝柱, 王坤宇, 等. 考虑风电接纳能力的储输联合规划[J]. 电网技术, 2018, 42(5): 1480–1489 HUANG Ying, LIU Baozhu, WANG Kunyu, et al. Joint planning of energy storage and transmission network considering wind power accommodation capability[J]. Power System Technology, 2018, 42(5): 1480–1489 [5] 黄宗龙, 江修波, 刘丽军. 低碳化背景下配电网“源—储—荷”多目标优化配置[J]. 电力科学与技术学报, 2020, 35(5): 36–45 HUANG Zonglong, JIANG Xiubo, LIU Lijun. Multi-objective optimal allocation of “generation-storage-load” under the low-carbon background[J]. Journal of Electric Power Science and Technology, 2020, 35(5): 36–45 [6] 刘沅昆, 张维静, 张艳, 等. 面向新型电力系统的新能源与储能联合规划方法[J]. 智慧电力, 2022, 50(10): 1–8 LIU Yuankun, ZHANG Weijing, ZHANG Yan, et al. Joint planning method of renewable energy and energy storage for new-type power system[J]. Smart Power, 2022, 50(10): 1–8 [7] ZENG B, ZHANG J H, YANG X, et al. Integrated planning for transition to low-carbon distribution system with renewable energy generation and demand response[J]. IEEE Transactions on Power Systems, 2014, 29(3): 1153–1165. [8] 陈倩, 王维庆, 王海云. 基于需求侧响应的主动配电网双层优化方法[J]. 电力系统保护与控制, 2022, 50(16): 1–13 CHEN Qian, WANG Weiqing, WANG Haiyun. Bi-level optimization model of an active distribution network based on demand response[J]. Power System Protection and Control, 2022, 50(16): 1–13 [9] 王伟臣, 张天宇, 宣文博, 等. 考虑机组组合和网络结构优化的电网规划方法[J]. 电力系统及其自动化学报, 2021, 33(2): 108–115 WANG Weichen, ZHANG Tianyu, XUAN Wenbo, et al. Power system planning method considering unit commitment and optimal transmission switching[J]. Proceedings of the CSU-EPSA, 2021, 33(2): 108–115 [10] NUMAN M, FENG D H, ABBAS F, et al. Impact assessment of a co-optimized dynamic line rating and transmission switching topology on network expansion planning[J]. International Transactions on Electrical Energy Systems, 2020, 30(8): e12457. [11] UÇKUN C, BOTTERUD A, BIRGE J R. An improved stochastic unit commitment formulation to accommodate wind uncertainty[J]. IEEE Transactions on Power Systems, 2016, 31(4): 2507–2517. [12] 王子文, 张英敏, 刘天琪, 等. 基于伴随网络的直流电网短路电流计算方法[J]. 中国电力, 2021, 54(10): 2–10, 27 WANG Ziwen, ZHANG Yingmin, LIU Tianqi, et al. A short-circuit current calculation method based on adjoint network for DC grid[J]. Electric Power, 2021, 54(10): 2–10, 27 [13] 华浩丞, 刘天琪, 何川, 等. 计及机组启停与线路投切显式短路电流约束的电力系统日前优化调度[J]. 中国电机工程学报, 2022, 42(5): 1724–1736 HUA Haocheng, LIU Tianqi, HE Chuan, et al. Day-ahead optimal scheduling of power system considering explicit short-circuit current constraints with the impact of commitment of units and transmission switching[J]. Proceedings of the CSEE, 2022, 42(5): 1724–1736 [14] 任乙沛. 面向短路电流越限消除的多馈入系统网架结构优化方法[D]. 北京: 华北电力大学, 2021. REN Yipei. Optimal transmission switching method for eliminating short circuit current overlimit in multi-infeed system[D]. Beijing: North China Electric Power University, 2021. [15] 李少岩, 任乙沛, 顾雪平, 等. 基于短路电流约束显式线性建模的输电网结构优化[J]. 电工技术学报, 2020, 35(15): 3292–3302 LI Shaoyan, REN Yipei, GU Xueping, et al. Optimization of transmission network structure based on explicit linear modeling of short circuit current constraints[J]. Transactions of China Electrotechnical Society, 2020, 35(15): 3292–3302 [16] 程浩忠, 张程铭, 柳璐, 等. 可再生能源接入下考虑短路电流限制的发输电鲁棒规划方法[J]. 电力系统自动化, 2021, 45(10): 68–76 CHENG Haozhong, ZHANG Chengming, LIU Lu, et al. Robust planning method for power generation and transmission with renewable energy integration considering short-circuit current limit[J]. Automation of Electric Power Systems, 2021, 45(10): 68–76 [17] 宋柄兵, 顾洁. 考虑线路开断限流的输电网双层扩展规划模型及应用[J]. 水电能源科学, 2016, 34(3): 192–196 SONG Bingbing, GU Jie. Transmission system Bi-level expansion planning model and its application considering opening lines for short circuit current limiting[J]. Water Resources and Power, 2016, 34(3): 192–196 [18] 李媛媛, 孙自安, 张志刚, 等. 大规模风电机组集中接入对系统短路电流的影响[J]. 中国电力, 2018, 51(4): 33–38, 88 LI Yuanyuan, SUN Zian, ZHANG Zhigang, et al. Impact of wind centralized access on system short circuit current[J]. Electric Power, 2018, 51(4): 33–38, 88 [19] 石志伟. 计及FACTS校正的N-k故障约束鲁棒机组组合[J]. 南方电网技术, 2021, 15(12): 11–19 SHI Zhiwei. N-k contingency constrained robust unit commitment considering the corrective control of FACTS[J]. Southern Power System Technology, 2021, 15(12): 11–19 [20] 王清. 双馈风电接入对电力系统稳定性影响机理研究[D]. 北京: 华北电力大学, 2016. WANG Qing. Mechanism of the impact of DFIGs on power system stability[D]. Beijing: North China Electric Power University, 2016. [21] 孙建锋. 风电场建模和仿真研究[D]. 北京: 清华大学, 2004. SUN Jianfeng. Research on wind farm modeling and simulating[D]. Beijing: Tsinghua University, 2004. [22] 高钰莹. 大规模风电场集电线和送出线故障选线与测距新方法研究[D]. 昆明: 昆明理工大学, 2020. GAO Yuying. Study on new method of fault line selection and location for gathering and sending lines of large-scale wind farm[D]. Kunming: Kunming University of Science and Technology, 2020. [23] GRIGG C, WONG P, ALBRECHT P, et al. The IEEE Reliability Test System-1996. A report prepared by the Reliability Test System Task Force of the Application of Probability Methods Subcommittee[J]. IEEE Transactions on Power Systems, 1999, 14(3): 1010–1020. [24] TEIMOURZADEH S, AMINIFAR F. MILP formulation for transmission expansion planning with short-circuit level constraints[J]. IEEE Transactions on Power Systems, 2016, 31(4): 3109–3118. [25] 夏冰阳. 配网考虑风储与DR协调优化规划与运行控制策略研究[D]. 北京: 华北电力大学, 2018. XIA Bingyang. Research on optimal planning and operation control strategy of distribution network considering wind power integration and demand response strategies[D]. Beijing: North China Electric Power University, 2018.
|