中国电力 ›› 2022, Vol. 55 ›› Issue (8): 2-13.DOI: 10.11930/j.issn.1004-9649.202111037

• 双碳目标下的新能源并网消纳关键技术 • 上一篇    下一篇

考虑季节性氢储及期货式碳交易的综合能源系统年度规划研究

孙子茹1, 艾芊1, 居来提?阿不力孜2, 何峰2, 袁少伟2   

  1. 1. 上海交通大学 电子信息与电气工程学院,上海 200240;
    2. 国网新疆电力有限公司 乌鲁木齐供电公司,新疆 乌鲁木齐 830000
  • 收稿日期:2021-11-08 修回日期:2022-04-20 出版日期:2022-08-28 发布日期:2022-08-18
  • 作者简介:孙子茹(1997—),女,硕士研究生,从事综合能源系统、储能等可调控资源的优化研究,E-mail:sunziru@sjtu.edu.cn;艾芊(1969—),男,通信作者,教授,从事虚拟电厂调度及市场运行、能源互联网、综合能源系统优化等研究,E-mail:aiqian@sjtu.edu.cn
  • 基金资助:
    国家电网有限公司科技项目(考虑多能联合的送端电网可再生能源消纳建模及应用研究,1400-202136216A-0-0-00)

Annual Planning Study of Integrated Energy System Considering Seasonal Hydrogen Storage and Futures Carbon Trading

SUN Ziru1, AI Qian1, JULAITI Abuliz2, HE Feng2, YUAN Shaowei2   

  1. 1. Department of Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China;
    2. Urumqi Power Supply Company, State Grid Xinjiang Electric Power Co., Ltd., Urumqi 830000, China
  • Received:2021-11-08 Revised:2022-04-20 Online:2022-08-28 Published:2022-08-18
  • Supported by:
    This work is supported by Science and Technology Project of SGCC (Modeling and Application Research on Renewable Energy Consumption in the Delivery Grid Considering Multi-Energy Combination, No.1400-202136216A-0-0-00)

摘要: 随着新能源渗透率不断提高,季节性供需波动成为新型综合能源系统在中长期规划内需要解决的重要问题。首先提出了考虑碳流及氢能的多能耦合综合能源系统框架,选择燃氢轮机取代燃料电池作为氢-电耦合方式,研究了氢气作为季节性储能的制-储-用过程;其次,为了控制系统年度碳排量,提出了适应系统年度规划的期货式碳交易机制,建立了以系统改造升级成本、运行成本、碳成本以及惩罚成本综合目标最优的综合能源系统年度规划模型,利用改进差分进化算法对模型进行求解;最后通过具体算例,证明了季节性氢储可有效平抑净负荷曲线的季节性峰谷差,期货式碳交易机制在控制系统年度碳排量不超标的基础上,降低了系统碳交易成本,为未来新型综合能源系统年度规划提供参考。

关键词: 季节性储能, 氢储能, 燃氢轮机, 期货式碳交易, 综合能源

Abstract: As the result of the ever-increasing penetration of new energy sources, particularly in order to facilitate the achievement of the dual carbon goals, it is of great importance to address the issue of seasonal fluctuations in the medium and long-term planning of new integrated energy systems. Firstly, this paper proposes a framework of multi-energy coupled integrated energy system considering both carbon flow and hydrogen energy. Choosing hydrogen-burning turbines instead of fuel cells as the hydrogen-electric coupling method, this paper investigates the process of hydrogen production-storage-use as seasonal energy storage. Secondly, in order to control the annual carbon emissions of the system, a futures-based carbon trading mechanism adapted to the annual planning of the system is proposed. This paper establishes an annual planning model for integrated energy systems in which the system modification cost, operation cost, carbon cost and penalty cost are set as the objective functions. The model is then solved using an improved differential evolutionary algorithm. Finally, the specific case study demonstrates that seasonal hydrogen storage can effectively smooth out the seasonal peak-to-valley difference of the net load curve. By virtue of the futures carbon trading mechanism, the system carbon trading cost can be reduced without exceeding the limit of the annual carbon emission of the system. The results of the algorithm can provide valuable reference for the annual planning of the new integrated energy system in the future.

Key words: seasonal energy storage, hydrogen storage, hydrogen-burning turbines, futures carbon trading, integrated energy