[1] 蒋振国, 周在彦, 刘征帆, 等. 计及多扰动的同步发电机模型参数有效性评估[J]. 智慧电力, 2020, 48(7): 100–105,111 JIANG Zhenguo, ZHOU Zaiyan, LIU Zhengfan, et al. Effectiveness evaluation of synchronous generator model parameters considering multi-disturbances[J]. Smart Power, 2020, 48(7): 100–105,111 [2] 刘伟. 电网严重故障下的电压稳定应对措施分析[J]. 电力系统保护与控制, 2020, 48(16): 163–170 LIU Wei. Analysis of voltage stability countermeasures under a severe fault in a power grid[J]. Power System Protection and Control, 2020, 48(16): 163–170 [3] TOOLABI MOGHADAM A, AGHAHADI M, ESLAMI M, et al. Adaptive rat swarm optimization for optimum tuning of SVC and PSS in a power system[J]. International Transactions on Electrical Energy Systems, 2022, 2022: 1–13. [4] 乔丽, 王航, 谢剑, 等. 同步调相机对分层接入特高压直流输电系统的暂态过电压抑制作用研究[J]. 中国电力, 2020, 53(3): 43–51 QIAO Li, WANG Hang, XIE Jian, et al. Suppressing effect of synchronous condenser on transient overvoltage of UHVDC system under hierarchical connection mode[J]. Electric Power, 2020, 53(3): 43–51 [5] 杨瑶玉, 王克文, 王君亮, 等. 大容量调相机对省级电网的影响分析[J]. 电力系统保护与控制, 2020, 48(24): 128–135 YANG Yaoyu, WANG Kewen, WANG Junliang, et al. Analysis of the influence of a large-capacity condenser on a provincial power grid[J]. Power System Protection and Control, 2020, 48(24): 128–135 [6] 胡臻, 崔挺, 呙虎, 等. 考虑电网动态特性的无功补偿配置方案[J]. 电力系统及其自动化学报, 2019, 31(10): 45–51 HU Zhen, CUI Ting, GUO Hu, et al. Reactive power compensation scheme considering dynamic characteristics of power system[J]. Proceedings of the CSU-EPSA, 2019, 31(10): 45–51 [7] FATAMA A Z, KHAN M A, KURUKURU V S B, et al. Coordinated reactive power strategy using static synchronous compensator for photovoltaic inverters[J]. International Transactions on Electrical Energy Systems, 2020, 30(6): 1–18. [8] 肖繁, 王涛, 饶渝泽, 等. 基于梯度提升决策树静态电压稳定裕度评估[J]. 电测与仪表, 2020, 57(20): 39–45 XIAO Fan, WANG Tao, RAO Yuze, et al. Static voltage stability margin evolution based on gradient boosting regression tree[J]. Electrical Measurement & Instrumentation, 2020, 57(20): 39–45 [9] 屈文, 周和平. 一种10 kV电力用户无功补偿新模式的实施[J]. 电力电容器与无功补偿, 2020, 41(4): 130–132 QU Wen, ZHOU Heping. Implementation of a new reactive power compensation mode for 10 kV power users[J]. Power Capacitor & Reactive Power Compensation, 2020, 41(4): 130–132 [10] ABDEL-RAHMAN M H, YOUSSEF F M H, SABER A A. New static var compensator control strategy and coordination with under-load tap changer[J]. IEEE Transactions on Power Delivery, 2006, 21(3): 1630–1635. [11] PARK J H, BAEK Y S. Coordination control of voltage between STATCOM and reactive power compensation devices in steady-state[J]. Journal of Electrical Engineering and Technology, 2012, 7(5): 689–697. [12] KIM G W, LEE K Y. Coordination control of ULTC transformer and STATCOM based on an artificial neural network[J]. IEEE Transactions on Power Systems, 2005, 20(2): 580–586. [13] 刘佳陇, 叶保璇, 张诗建, 等. 主动配电网集中/就地自适应无功电压控制方法[J]. 电网与清洁能源, 2019, 35(11): 20–29 LIU Jialong, YE Baoxuan, ZHANG Shijian, et al. Adaptive centralized/local volt-VAR control in active distribution network[J]. Power System and Clean Energy, 2019, 35(11): 20–29 [14] 肖峰, 韩民晓, 唐晓骏, 等. 含大规模光伏并网的弱送端系统的电压稳定性[J]. 中国电力, 2020, 53(11): 31–39 XIAO Feng, HAN Minxiao, TANG Xiaojun, et al. Voltage stability of weak sending-end system with large-scale grid-connected photovoltaic power plants[J]. Electric Power, 2020, 53(11): 31–39 [15] KACEJKO P, PIJARSKI P. Optimal voltage control in MV network with distributed generation[J]. Energies, 2021, 14(2): 469. [16] 祝佳佩, 赵文彬. 考虑线路潮流波动对母线电压影响的特高压交流电网电压控制策略[J]. 电力系统保护与控制, 2021, 49(6): 76–82 ZHU Jiapei, ZHAO Wenbin. Voltage control strategy of a UHV AC power grid considering the influence of line power flow fluctuation on bus voltage[J]. Power System Protection and Control, 2021, 49(6): 76–82 [17] 唐挺, 马明, 欧阳金鑫, 等. 风速快速波动下双馈风电场无功电压协调控制策略[J]. 广东电力, 2021, 34(5): 19–27 TANG Ting, MA Ming, OUYANG Jinxin, et al. Reactive power and voltage coordination control strategy of DFIG-based wind farm under wind speed variations[J]. Guangdong Electric Power, 2021, 34(5): 19–27 [18] 何欣芸, 周朝荣. 水文循环算法的改进[J]. 计算机工程与设计, 2020, 41(11): 3053–3062 HE Xinyun, ZHOU Zhaorong. Improvements of hydrological cycle algorithm[J]. Computer Engineering and Design, 2020, 41(11): 3053–3062 [19] KE X D, SAMAAN N, HOLZER J, et al. Coordinative real-time sub-transmission volt-var control for reactive power regulation between transmission and distribution systems[J]. IET Generation, Transmission & Distribution, 2019, 13(11): 2006–2014. [20] MORATTAB A, AKHRIF O, SAAD M. Decentralised coordinated secondary voltage control of multi-area power grids using model predictive control[J]. IET Generation, Transmission & Distribution, 2017, 11(18): 4546–4555. [21] SAMBAIAH K S. Renewable energy source allocation in electrical distribution system using water cycle algorithm[J]. Materials Today:Proceedings, 2022, 58: 20–26. [22] 姚凯. 基于多目标水循环算法的冷热电联供优化调度研究[D]. 南昌: 南昌大学, 2020. YAO Kai. Research on optimization scheduling of combined cooling heating and power based on Multi-objective water cycle algorithm[D]. Nanchang: Nanchang University, 2020. [23] 韩颖. 改进水循环算法在多目标有功优化问题中的应用研究[D]. 重庆: 重庆邮电大学, 2021. HAN Ying. Research on application of improved water cycle algorithm in multi-objective active power optimization problem[D]. Chongqing: Chongqing University of Posts and Telecommunications, 2021. [24] 胡力中, 程军照, 陈先富, 等. 多种无功补偿装置的电压协调控制研究[J]. 软件, 2017, 38(10): 60–66 HU Lizhong, CHENG Junzhao, CHEN Xianfu, et al. Research on voltage coordination control of various reactive power compensation devices[J]. Computer Engineering & Software, 2017, 38(10): 60–66 [25] 吴云亮, 张建新, 李豹, 等. 深度学习辅助约束辨识的电力市场快速出清方法[J]. 中国电力, 2020, 53(9): 90–97,207 WU Yunliang, ZHANG Jianxin, LI Bao, et al. A fast power market clearing method based on active constraints identification by deep learning[J]. Electric Power, 2020, 53(9): 90–97,207
|