[1] 王昌长, 李福祺, 高胜友. 电力设备的在线监测与故障诊断[M]. 北京: 清华大学出版社, 2006. [2] 黄雪莜, 张宇, 马书恒, 等. 基于卷积神经网络的开关柜故障率预测方法[J]. 电工技术, 2020(5): 21-24 HUANG Xueyou, ZHANG Yu, MA Shuheng, et al. Fault rate prediction method of switchgear based on convolutional neural network[J]. Electric Engineering, 2020(5): 21-24 [3] 霍天. 开关柜内局部放电电磁波特性分析[J]. 电工电气, 2019(12): 22-27, 58 HUO Tian. Analysis of electromagnetic characteristics of partial discharge in switchgear[J]. Electrotechnics Electric, 2019(12): 22-27, 58 [4] 唐志国, 唐铭泽, 李金忠, 等. 电气设备局部放电模式识别研究综述[J]. 高电压技术, 2017, 43(7): 2263-2277 TANG Zhiguo, TANG Mingze, LI Jinzhong, et al. Review on partial discharge pattern recognition of electrical equipment[J]. High Voltage Engineering, 2017, 43(7): 2263-2277 [5] BASHARAN V, MARIA SILUVAIRAJ W I, RAMASAMY VELAYUTHAM M. Recognition of multiple partial discharge patterns by multi-class support vector machine using fractal image processing technique[J]. IET Science, Measurement & Technology, 2018, 12(8): 1031-1038. [6] LI Yanqing, LU Fangcheng, XIN Baoan, et al. A new method using ultrasonic for partial discharge pattern recognition[C]//2002 International Conference on Power System Technology, 2002, 2: 1004-1007. [7] 唐松平, 周舟, 彭刚, 等. 基于自适应神经模糊的GIS缺陷模式识别方法[J]. 计算机与数字工程, 2019, 47(9): 2321-2326 TANG Songping, ZHOU Zhou, PENG Gang, et al. Defect pattern recognition method in GIS based on adaptive network-based fuzzy inference system[J]. Computer & Digital Engineering, 2019, 47(9): 2321-2326 [8] 李晨焱, 牛小光, 何洁. 基于神经网络的GIS局部放电模式识别的研究[J]. 科技视界, 2015(22): 263 [9] 谢国民, 倪乐水. 基于IABC优化SVM的变压器故障诊断[J]. 电力系统保护与控制, 2020, 48(15): 156-163 XIE Guomin, NI Leshui. Transformer fault diagnosis based on an artificial bee colony-support vector machine optimization algorithm[J]. Power System Protection and Control, 2020, 48(15): 156-163 [10] SHARKAWY R, MANGOUBI R, ABDEL-GALIL T K, et al. SVM classification of contaminating particles in liquid dielectrics using higher order statistics of electrical and acoustic PD measurements[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2007, 14(3): 669-678. [11] 王伟, 唐庆华, 刘力卿, 等. 于加权综合损失优化深度学习和DGA的变压器故障诊断方法[J]. 南方电网技术, 2020, 14(3): 29-34 WANG Wei, TANG Qinghua, LIU Liqing, et al. Transformer fault diagnosis method based on weighted comprehensive loss optimization deep learning and DGA[J]. Southern Power System Technology, 2020, 14(3): 29-34 [12] WAN X, SONG H, LUO L, et al. Pattern recognition of partial discharge image based on one-dimensional convolutional neural network[C]//Condition Monitoring and Diagnosis (CMD). Perth, WA, Australia: IEEE, 2018: 1-4. [13] 汪颖, 孙建风, 肖先勇, 等. 基于优化卷积神经网络的电缆早期故障分类识别[J]. 电力系统保护与控制, 2020, 48(7): 10-18 WANG Ying, SUN Jianfeng, XIAO Xianyong, et al. Cable incipient fault classification and identification based on optimized convolution neural network[J]. Power System Protection and Control, 2020, 48(7): 10-18 [14] TAIGMAN Y, YANG M, RANZATO M, et al. DeepFace: closing the gap to human-level performance in face verification[C]//CVPR'14: Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. 2014: 1701-1708. [15] HE K M, ZHANG X Y, REN S Q, et al. Identity mappings in deep residual networks[C]//Computer Vision - ECCV 2016. Cham: Springer International Publishing, 2016: 630-645. [16] 李天翼, 王明辉, 黄祖建, 等. 基于相关权值的图像椒盐噪声自适应窗滤波[J]. 四川大学学报(工程科学版), 2012, 44(4): 103-109 LI Tianyi, WANG Minghui, HUANG Zujian, et al. Self-adaptive filtering of salt-pepper noise in images with correlation weights[J]. Journal of Sichuan University (Engineering Science Edition), 2012, 44(4): 103-109 [17] 周飞燕, 金林鹏, 董军. 卷积神经网络研究综述[J]. 计算机学报, 2017, 40(6): 1229-1251 ZHOU Feiyan, JIN Linpeng, DONG Jun. Review of convolutional neural network[J]. Chinese Journal of Computers, 2017, 40(6): 1229-1251 [18] HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[EB/OL]. 2016: arXiv: 1608.06993[cs.CV]. https://arxiv.org/abs/1608.06993. [19] HINTON G E, SRIVASTAVA N, KRIZHEVSKY A, et al. Improving neural networks by preventing co-adaptation of feature detectors[EB/OL]. 2012: arXiv: 1207.0580[cs.NE]. https://arxiv.org/abs/1207.0580. [20] 郑首易, 骆德汉, 温腾腾, 等. t-SNE+LDA算法在仿生嗅觉中的应用研究[J]. 计算机应用研究, 2018, 35(11): 3315-3317, 3321 ZHENG Shouyi, LUO Dehan, WEN Tengteng, et al. Research on bionic olfactory application using t-SNE+LDA[J]. Application Research of Computers, 2018, 35(11): 3315-3317, 3321
|