[1] LEITE J B, SANCHES MANTOVANI J R. Detecting and locating non-technical losses in modern distribution networks[J]. IEEE Transactions on Smart Grid, 2018, 9(2): 1023-1032. [2] NAGI J, YAP K S, TIONG S K, et al. Improving SVM-based nontechnical loss detection in power utility using the fuzzy inference system[J]. IEEE Transactions on Power Delivery, 2011, 26(2): 1284-1285. [3] AHMAD T, CHEN H X, WANG J Y, et al. Review of various modeling techniques for the detection of electricity theft in smart grid environment[J]. Renewable and Sustainable Energy Reviews, 2018, 82(3): 2916-2933. [4] 陈启鑫, 郑可迪, 康重庆, 等. 异常用电的检测方法: 评述与展望[J]. 电力系统自动化, 2018, 42(17): 189-199 CHEN Qixin, ZHENG Kedi, KANG Chongqing, et al. Detection methods of abnormal electricity consumption behaviors: review and prospect[J]. Automation of Electric Power Systems, 2018, 42(17): 189-199 [5] 许刚, 谈元鹏, 戴腾辉. 稀疏随机森林下的用电侧异常行为模式检测[J]. 电网技术, 2017, 41(6): 1973-1982 XU Gang, TAN Yuanpeng, DAI Tenghui. Sparse random forest-based abnormal behavior pattern detection of electric power user side[J]. Power System Technology, 2017, 41(6): 1973-1982 [6] 胡殿刚, 李韶瑜, 楼俏, 等. ELM算法在用户用电行为分析中的应用[J]. 计算机系统应用, 2016, 25(8): 155-161 HU Diangang, LI Shaoyu, LOU Qiao, et al. Application of ELM algorithm in the analysis of customer electrical behavior[J]. Computer Systems & Applications, 2016, 25(8): 155-161 [7] ZHENG Z B, YANG Y T, NIU X D, et al. Wide and deep convolutional neural networks for electricity-theft detection to secure smart grids[J]. IEEE Transactions on Industrial Informatics, 2018, 14(4): 1606-1615. [8] 杨斌. 基于聚类的异常检测技术的研究[D]. 长沙: 中南大学, 2008. YANG Bin. Research on cluster-based anomaly detection technology[D]. Changsha: Central South University, 2008. [9] PASSOS JÚNIOR L A, OBA RAMOS C C, RODRIGUES D, et al. Unsupervised non-technical losses identification through optimum-path forest[J]. Electric Power Systems Research, 2016, 140: 413-423. [10] 王桂兰, 周国亮, 赵洪山, 等. 大规模用电数据流的快速聚类和异常检测技术[J]. 电力系统自动化, 2016, 40(24): 27-33 WANG Guilan, ZHOU Guoliang, ZHAO Hongshan, et al. Fast clustering and anomaly detection technique for large-scale power data stream[J]. Automation of Electric Power Systems, 2016, 40(24): 27-33 [11] 庄池杰, 张斌, 胡军, 等. 基于无监督学习的电力用户异常用电模式检测[J]. 中国电机工程学报, 2016, 36(2): 379-387 ZHUANG Chijie, ZHANG Bin, HU Jun, et al. Anomaly detection for power consumption patterns based on unsupervised learning[J]. Proceedings of the CSEE, 2016, 36(2): 379-387 [12] 田力, 向敏. 基于密度聚类技术的电力系统用电量异常分析算法[J]. 电力系统自动化, 2017, 41(5): 64-70 TIAN Li, XIANG Min. Abnormal power consumption analysis based on density-based spatial clustering of applications with noise in power systems[J]. Automation of Electric Power Systems, 2017, 41(5): 64-70 [13] 李娜, 张文月, 陈国平, 等. 基于用户负荷特性的电价交叉补贴测算模型[J]. 中国电力, 2019, 52(5): 148-154 LI Na, ZHANG Wenyue, CHEN Guoping, et al. Electricity price cross subsidy calculation model considering load characteristics of electricity consumers[J]. Electric Power, 2019, 52(5): 148-154 [14] 孙毅, 李世豪, 崔灿, 等. 基于高斯核函数改进的电力用户用电数据离群点检测方法[J]. 电网技术, 2018, 42(5): 1595-1606 SUN Yi, LI Shihao, CUI Can, et al. Improved outlier detection method of power consumer data based on Gaussian kernel function[J]. Power System Technology, 2018, 42(5): 1595-1606 [15] 胡天宇, 郭庆来, 孙宏斌. 基于堆叠去相关自编码器和支持向量机的窃电检测[J]. 电力系统自动化, 2019, 43(1): 119-125 HU Tianyu, GUO Qinglai, SUN Hongbin. Nontechnical loss detection based on stacked uncorrelating autoencoder and support vector machine[J]. Automation of Electric Power Systems, 2019, 43(1): 119-125 [16] 张承智, 肖先勇, 郑子萱. 基于实值深度置信网络的用户侧窃电行为检测[J]. 电网技术, 2019, 43(3): 1083-1091 ZHANG Chengzhi, XIAO Xianyong, ZHENG Zixuan. Electricity theft detection for customers in power utility based on real-valued deep belief network[J]. Power System Technology, 2019, 43(3): 1083-1091 [17] 张小斐, 耿俊成, 孙玉宝. 图正则非线性岭回归模型的异常用电行为识别[J]. 计算机工程, 2018, 44(6): 8-12 ZHANG Xiaofei, GENG Juncheng, SUN Yubao. Abnormal electricity behavior recognition of graph regularization nonlinear ridge regression model[J]. Computer Engineering, 2018, 44(6): 8-12 [18] 郭志民, 袁少光, 孙玉宝. 基于L0稀疏超图半监督学习的异常用电行为识别[J]. 计算机应用与软件, 2018, 35(2): 54-59 GUO Zhiminx, YUAN Shaoguang, SUN Yubao. Abnormal electricity power consumption recognition based on L0 sparse hypergraph semi-supervised learning[J]. Computer Applications and Software, 2018, 35(2): 54-59 [19] 袁静, 章毓晋. 融合梯度差信息的稀疏去噪自编码网络在异常行为检测中的应用[J]. 自动化学报, 2017, 43(4): 604-610 YUAN Jing, ZHANG Yujin. App1ication of sparse denoising auto encoder network with gradient difference information for abnormal action detection[J]. Acta Automatica Sinica, 2017, 43(4): 604-610 [20] 赵洪山, 刘辉海, 刘宏杨, 等. 基于堆叠自编码网络的风电机组发电机状态监测与故障诊断[J]. 电力系统自动化, 2018, 42(11): 102-108 ZHAO Hongshan, LIU Huihai, LIU Hongyang, et al. Condition monitoring and fault diagnosis of wind turbine generator based onStacked autoencoder network[J]. Automation of Electric Power Systems, 2018, 42(11): 102-108 [21] NG A. Sparse autoencoder[J]. CS294A Lecture Notes, 2011, 72: 1-19. [22] VINCENT P, LAROCHELLE H, LAJOIE I, et al. Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion[J]. Journal of Machine Learning Research, 2010, 11(12): 3371-3408. [23] 姜锐, 滕伟, 刘潇波, 等. 风电机组发电机轴承电腐蚀故障的分析诊断[J]. 中国电力, 2019, 52(6): 128-133 JIANG Rui, TENG Wei, LIU Xiaobo, et al. Diagnosis of electrical corrosion fault in wind turbine generator bearing based on vibration signal analysis[J]. Electric Power, 2019, 52(6): 128-133 [24] 王鹏, 张朋宇, 高亚静, 等. 监管视角下的电力市场用户分类指标体系及算法研究[J]. 中国电力, 2018, 51(12): 139-148 WANG Peng, ZHANG Pengyu, GAO Yajing, et al. Research on index system and algorithm of customer classification in electricity market from the regulatory perspective[J]. Electric Power, 2018, 51(12): 139-148 [25] 林顺富, 黄娜娜, 赵伦加, 等. 基于用户行为的家庭日负荷曲线模型[J]. 电力建设, 2016, 37(10): 114-121 LIN Shunfu, HUANG Nana, ZHAO Lunjia, et al. Domestic daily load curve modeling based on user behavior[J]. Electric Power Construction, 2016, 37(10): 114-121 [26] 姚历毅, 罗萍萍, 项胤兴, 等. 具有抗逆序及权重自适应的黑启动方案评估方法[J]. 中国电力, 2019, 52(3): 92-99 YAO Liyi, LUO Pingping, XIANG Yinxing, et al. Evaluation method of black start scheme with anti-reverse order and weight adaptive[J]. Electric Power, 2019, 52(3): 92-99 [27] GOODFELLOW I, BENGIO Y, AARON C. Deep learning[M]. Cambridge, MA, USA: MIT Press, 2016. [28] LAROCHELLE H, BENGIO Y, LOURADOUR J, et al. Exploring strategies for training deep neural networks[J]. Journal of Machine Learning Research, 2009, 1(10): 1-40. [29] 蔡坤宝, 王成良, 陈曾汉. 产生标准高斯白噪声序列的方法[J]. 中国电机工程学报, 2004, 24(12): 207-211 CAI Kunbao, WANG Chengliang, CHEN Zenghan. A method for generating standard gaussian white noise sequences[J]. Proceedings of the CSEE, 2004, 24(12): 207-211 [30] HU T Y, GUO Q L, SHEN X W, et al. Utilizing unlabeled data to detect electricity fraud in AMI: a semisupervised deep learning approach[J]. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30(11): 3287-3299. [31] 朱栋. 典型负荷用电行为模式分析方法及其应用研究[D]. 南京: 东南大学, 2017. ZHU Dong. Analysis and application of typical load electricity behavior model[D]. Nanjing: Southeast University, 2017. |