中国电力 ›› 2013, Vol. 46 ›› Issue (9): 75-79.DOI: 10.11930/j.issn.1004-9649.2013.9.75.4

• 电网 • 上一篇    下一篇

基于贝叶斯网络和粗糙集约简的变压器故障诊断

吕启深1, 曾辉雄2, 姚森敬1, 黄荣辉1, 张海龙2   

  1. 1. 深圳供电局有限公司,广东 深圳 518000; 2. 国网电力科学研究院,湖北 武汉 430074
  • 收稿日期:2013-04-15 出版日期:2013-09-23 发布日期:2015-12-10
  • 作者简介:吕启深(1985—),男,内蒙古呼伦贝尔人,工程师,从事带电测试及状态监测工作。
  • 基金资助:
    中国南方电网有限责任公司科技项目(K-SZ2012-070)

Transformer Fault Diagnosis Method Based on Bayesian Network and Rough Set Reduction Theory

LU Qi-shen1, ZENG Hui-xiong2, YAO Sen-jing1, HUANG Rong-hui1, ZHANG Hai-long2   

  1. 1. Shenzhen Power Supply Bureau Co. Ltd., Shenzhen 518000, China; 2. State Grid Electric Power Research Institute, Wuhan 430074, China
  • Received:2013-04-15 Online:2013-09-23 Published:2015-12-10

摘要: 贝叶斯网络处理不确定性问题的能力可以很好地解决变压器故障诊断中因数据不完整而难以得到可靠结论的问题。为此,将贝叶斯网络分类器和粗糙集约简理论相结合,基于专家知识及统计数据建立贝叶斯网络分类模型,并综合运用色谱数据及电气试验数据作为变压器故障诊断的属性集输入,实现概率推理及对可能故障类型的排序,提高诊断结论的可靠性。此外,利用粗糙集约简理论对贝叶斯网络分类模型进行最小约简,降低网络结构的复杂性,减小模型所依赖的输入量,以更切合实际诊断情况。实验证明,该方法具有处理信息缺失的能力及容错特性,准确率较高,是一种变压器故障诊断的有效方法。

关键词: 变压器, 故障诊断, 决策表, 贝叶斯网络, 粗糙集, 知识约简

Abstract: The ability of Bayesian network to deal with uncertain problems can be a solution to transformer fault diagnosis when data is incomplete and reliable conclusions are difficult to be reached. By combining the Bayesian network classifier and rough set reduction theory, this paper set up a Bayesian network classification model based on expert knowledge and statistical data. The integral use of DGA and electrical test data as the input set of diagnosis realized the probabilistic reasoning and sequencing of the possible failure types, and as a result, improved the reliability of the diagnosis. Meanwhile the rough set reduction theory was used to make the minimization reduction of Bayesian network classification model, effectively reduced the complexity of network structure and the input of the model. Experiments proved that this method is an effective transformer fault-diagnosis method and has the ability to deal with the absence of information, the fault-tolerant features and high accuracy.

Key words: transformer, failure diagnosis, decision table, Bayesian network, rough sets, information reduction

中图分类号: