中国电力 ›› 2020, Vol. 53 ›› Issue (7): 55-71.DOI: 10.11930/j.issn.1004-9649.202002108
刘卫东1, 李奇南2,3, 王轩2,3, 张帆2,3, 李兰芳2,4, 燕翚2,3
收稿日期:
2020-02-21
修回日期:
2020-03-16
发布日期:
2020-07-05
作者简介:
刘卫东(1967—),男,高级工程师,从事新能源发电与并网技术研究,E-mail: liuweidong2011@126.com;李奇南(1981—),男,通信作者,博士,从事柔性交、直流输电及新能源并网研究,E-mail: liqinan@sgepri.sgcc.com.cn;王轩(1978—),男,硕士,高级工程师(教授级),从事电力系统和电力电子技术研究,E-mail: wangxuan_power@126.com
基金资助:
LIU Weidong1, LI Qinan2,3, WANG Xuan2,3, ZHANG Fan2,3, LI Lanfang2,4, YAN Hui2,3
Received:
2020-02-21
Revised:
2020-03-16
Published:
2020-07-05
Supported by:
摘要: 海上风电具有风力资源稳定性强、年利用小时数高等特点,随着海上风电机组大型化、投资规模扩大以及建设成本下降,基于柔性直流输电技术的大规模海上风电送出已成为海上风电发展和研究的热点方向。结合国内外典型海上风电柔性直流输电工程,对换流阀、联接变压器、耗能装置、高压直流断路器、海底直流电缆关键电气设备应用现状等进行分析和总结,介绍控制系统构、硬件组成和控制算法研究现状。考虑到海上平台所处的盐雾腐蚀环境,介绍了联接变压器、换流阀的防腐设计和海水冷却系统设计。分析、总结了大规模海上风电的并网技术方案的研究现状,对海上换流站、海上风电场的发展趋势进行展望。
刘卫东, 李奇南, 王轩, 张帆, 李兰芳, 燕翚. 大规模海上风电柔性直流输电技术应用现状和展望[J]. 中国电力, 2020, 53(7): 55-71.
LIU Weidong, LI Qinan, WANG Xuan, ZHANG Fan, LI Lanfang, YAN Hui. Application Status and Prospect of VSC-HVDC Technology for Large-Scale Offshore Wind Farms[J]. Electric Power, 2020, 53(7): 55-71.
[1] IRENA. Future of wind: deployment, investment, technology, grid integration and socio-economic aspects[R]. Abu Dhabi: IRENA, 2019. [2] 孙一琳. 全球风电市场展望[J]. 风能, 2019(11): 68-70 [3] LAKSHMANAN P, LIANG J, JENKINS N. Assessment of collection systems for HVDC connected offshore wind farms[J]. Electric Power Systems Research, 2015, 129: 75-82. [4] 徐进, 金逸, 胡从川, 等. 海上风电集群电能组合输送方式研究[J]. 电网与清洁能源, 2016, 32(11): 107-113 XU Jin, JIN Yi, HU Congchuan, et al. Research on combined power transmission scheme for offshore wind farm cluster[J]. Power System and Clean Energy, 2016, 32(11): 107-113 [5] 王长虹, 刘天琪, 李保宏. 多个海上风电场输电组网拓扑研究[J]. 现代电力, 2018, 35(5): 56-61 WANG Changhong, LIU Tianqi, LI Baohong. Research on topology of transmission network with multiple offshore wind farms[J]. Modern Electric Power, 2018, 35(5): 56-61 [6] 王锡凡, 卫晓辉, 宁联辉, 等. 海上风电并网与输送方案比较[J]. 中国电机工程学报, 2014, 34(31): 5459-5466 WANG Xifan, WEI Xiaohui, NING Lianhui, et al. Integration techniques and transmission schemes for off-shore wind farms[J]. Proceedings of the CSEE, 2014, 34(31): 5459-5466 [7] 王国英, 贾一凡, 邓娜, 等. 应用于海上风电接入的VSC-HVDC系统主网侧交流故障穿越方案[J]. 全球能源互联网, 2019, 2(2): 146-154 WANG Guoying, JIA Yifan, DENG Na, et al. Grid side fault ride through solution for offshore wind connection with VSC-HVDC[J]. Journal of Global Energy Interconnection, 2019, 2(2): 146-154 [8] 黄明煌, 王秀丽, 刘沈全, 等. 分频输电应用于深远海风电并网的技术经济性分析[J]. 电力系统自动化, 2019, 43(5): 167-174 HUANG Minghuang, WANG Xiuli, LIU Shenquan, et al. Technical and economic analysis on fractional frequency transmission system for integration of long-distance offshore wind farm[J]. Automation of Electric Power Systems, 2019, 43(5): 167-174 [9] 徐政, 屠卿瑞, 管敏渊. 柔性直流输电系统 [M]. 北京: 机械工业出版社, 2013. [10] XIANG X, MERLIN M M C, GREEN T C. Cost analysis and comparison of HVAC, LFAC and HVDC for offshore wind power connection [C]//12th IET International Conference on AC and DC Power Transmission (ACDC 2016), Beijing, China. Institution of Engineering and Technology, 2016. [11] 黄志秋, 陈冰, 周敏. 海上风电送出工程技术与应用 [M]. 北京: 中国水利水电出版社, 2016. [12] 柔性直流输电助力海上风电新发展[J]. 变频器世界, 2019(10): 24-25. [13] 三峡集团最新5个海上风电项目招标公告 [EB/OL]. (2019-07-15)[2020-01-18].http://news.bjx.com.cn/html/20190715/992654.shtml. [14] 江苏射阳H3#、H4#、H5#海上风电柔性直流输电工程PC项目招标公告 [EB/OL].(2019-12-01)[2020-01-18].http://www.bokee.net/bloggermodule/blog_viewblog.do?id=38345347. [15] 周文栋, 王学梅, 张波, 等. IGBT模块键合线失效研究[J]. 电源学报, 2016, 14(1): 10-17 ZHOU Wendong, WANG Xuemei, ZHANG Bo, et al. Research on failures of bonding wire in IGBTs module[J]. Journal of Power Supply, 2016, 14(1): 10-17 [16] 窦泽春, 刘国友, 陈俊, 等. 大功率压接式IGBT器件设计与关键技术[J]. 大功率变流技术, 2016(2): 21-25, 34 DOU Zechun, LIU Guoyou, CHEN Jun, et al. Design and key technologies of high-power press-pack IGBT device[J]. High Power Converter Technology, 2016(2): 21-25, 34 [17] 我国研制出世界最大容量压接型IGBT [J]. 电气技术, 2018(1): 120. [18] ABB Review. Evolution of HVDC light [R]. 2018: 60-67. [19] DUGAL F, BASCHNAGEL A, RAHIMO M, et al. The next generation 4500V/3000A BIGT Stakpak modules [C]//International Exhibition & Conference for Power Electronics. PCIM Europe. VDE, 2017: 765–769. [20] Rainer M, Anton L, Jürgen H.Modulares Stromrichterkonzept für Netzkupplungsanwendung bei hohen Spannungen[C]//ETG-Fachtagung.Bad Nauheim: Fachtagung des VDE, 2002: 1–7. [21] JACOBSON B, KARLSSON P, ASPLUNd G, et al. VSC-HVDC transmission with cascaded two-level converters [C]//CIGRE, Paris, 2010. [22] 郝为瀚, 周钰. 海上柔性直流换流站关键电气设备选型研究[J]. 南方能源建设, 2019, 6(1): 31-35 HAO Weihan, ZHOU Yu. Research on the selection of key electrical equipments in offshore VSC-HVDC converter station[J]. Southern Energy Construction, 2019, 6(1): 31-35 [23] TU Q R, XU Z, XU L. Reduced switching-frequency modulation and circulating current suppression for modular multilevel converters[J]. IEEE Transactions on Power Delivery, 2011, 26(3): 2009-2017. [24] POU J, CEBALLOS S, KONSTANTINOU G, et al. Circulating current injection methods based on instantaneous information for the modular multilevel converter[J]. IEEE Transactions on Industrial Electronics, 2015, 62(2): 777-788. [25] LI R, WILLIAMS B W, FLETCHER J E. Influence of third harmonic injection on modular multilevel converter -based high-voltage direct current transmission systems[J]. IET Generation, Transmission & Distribution, 2016, 10(11): 2764-2770. [26] CIGRE WG B4.55. HVDC connection of offshore wind power plants [R]. Paris: CIGRE, 2015. [27] ABDALRAHMAN A, ISABEGOVIC E. DolWin1 - Challenges of connecting offshore wind farms [C]//2016 IEEE International Energy Conference (ENERGYCON), April 4-8, 2016. Leuven. IEEE, 2016: 1–10. [28] FONTEYNE D, KHILAR P, BODEN M. Design consideration associated with DolWin3 and evolution of GE’s Grid Solutions Business VSC Solution [C]. CIGRE 2016, pp. 1–10. [29] HUSSENNETHER V, RITTIGER J, BARTH A, et al. Projects BorWin2 and HelWin1-Large Scale Multilevel Voltage-Sourced Converter Technology for Bundling of Offshore Windpower. CIGRE 2012, pp.1–11. [30] 傅春翔, 汪天呈, 郦洪柯, 等. 用于海上风电并网的柔性直流系统接地方式研究[J]. 电力系统保护与控制, 2019, 47(20): 119-126 FU Chunxiang, WANG Tiancheng, LI Hongke, et al. Study on grounding methods of VSC-HVDC for off-shore wind farm integration[J]. Power System Protection and Control, 2019, 47(20): 119-126 [31] MANEIRO J, TENNAKOON S, BARKER C, et al. Energy diverting converter topologies for HVDC transmission systems [C]//2013 15th European Conference on Power Electronics and Applications (EPE), September 2-6, 2013. Lille, France. IEEE, 2013: 1–10. [32] 李琦, 宋强, 刘文华, 等. 基于柔性直流输电的风电场并网故障穿越协调控制策略[J]. 电网技术, 2014, 38(7): 1739-1745 LI Qi, SONG Qiang, LIU Wenhua, et al. A coordinated control strategy for fault ride-through of wind farm integration based on VSC-HVDC[J]. Power System Technology, 2014, 38(7): 1739-1745 [33] 魏晓光, 杨兵建, 汤广福. 高压直流断路器技术发展与工程实践[J]. 电网技术, 2017, 41(10): 3180-3188 WEI Xiaoguang, YANG Bingjian, TANG Guangfu. Technical development and engineering applications of HVDC circuit breaker[J]. Power System Technology, 2017, 41(10): 3180-3188 [34] H?FNER J, JACOBSON B. Proactive hybrid HVDC breakers - A key innovation for reliable HVDC grids[C]//2011. [35] RAHIMO M. STORASTA L, DUGL F, et al, The bimode insulated gate transistor (BIGT), an ideal power semiconductor for power electronics based DC breaker applications[C]//CIGRé. Session. Paris: CIGRE, 2014: B4-302. [36] GRIESHABER W, DUPRAZ J P. PENACHE D L. Development and test of a 120 kV direct current circuit breaker [C]//CIGRE Session. Paris: CIGRE, 2014: B4–301. [37] 魏晓光, 高冲, 罗湘, 等. 柔性直流输电网用新型高压直流断路器设计方案[J]. 电力系统自动化, 2013, 37(15): 95-102 WEI Xiaoguang, GAO Chong, LUO Xiang, et al. A novel design of high-voltage DC circuit breaker in HVDC flexible transmission grid[J]. Automation of Electric Power Systems, 2013, 37(15): 95-102 [38] ZHOU W D, WEI X G, ZHANG S, et al. Development and test of a 200kV full-bridge based hybrid HVDC breaker [C]//2015 17th European Conference on Power Electronics and Applications (EPE'15 ECCE-Europe), September 8-10, 2015. Geneva. IEEE, 2015: 1–7. [39] 石巍, 曹冬明, 杨兵, 等. 500 kV整流型混合式高压直流断路器[J]. 电力系统自动化, 2018, 42(7): 102-107 SHI Wei, CAO Dongming, YANG Bing, et al. 500 kV commutation-based hybrid HVDC circuit breaker[J]. Automation of Electric Power Systems, 2018, 42(7): 102-107 [40] 中国西电研制成功500 kV高压直流断路器[J]. 变压器, 2018, 55(2): 51. [41] FENG L, GOU R F, YANG X P, et al. Research on the current commutation in a novel hybrid HVDC circuit breaker[C]//2017 19th European Conference on Power Electronics and Applications (EPE'17 ECCE Europe), September 11-14, 2017. Warsaw. IEEE, 2017: 1–9. [42] LIU G R, XU F, XU Z, et al. Assembly HVDC breaker for HVDC grids with modular multilevel converters[J]. IEEE Transactions on Power Electronics, 2017, 32(2): 931-941. [43] MOKHBERDORAN A, VAN HERTEM D, SILVA N, et al. Multiport hybrid HVDC circuit breaker[J]. IEEE Transactions on Industrial Electronics, 2018, 65(1): 309-320. [44] XIANG B, ZHANG L C, YANG K, et al. Arcing time of a DC circuit breaker based on a superconducting current-limiting technology[J]. IEEE Transactions on Applied Superconductivity, 2016, 26(7): 1-5. [45] 李承昱, 李帅, 赵成勇, 等. 适用于直流电网的限流混合式直流断路器[J]. 中国电机工程学报, 2017, 37(24): 7154-7162, 7429 LI Chengyu, LI Shuai, ZHAO Chengyong, et al. A novel topology of current-limiting hybrid DC circuit breaker for DC grid[J]. Proceedings of the CSEE, 2017, 37(24): 7154-7162, 7429 [46] 常彬, 高路, 闫鹤鸣, 等. 具备潮流控制功能的直流断路器仿真建模研究[J]. 中国电机工程学报, 2018, 38(20): 5983-5991 CHANG Bin, GAO Lu, YAN Heming, et al. Modeling and simulation study of A new type of HVDC circuit breaker[J]. Proceedings of the CSEE, 2018, 38(20): 5983-5991 [47] 高强, 林烨, 黄立超, 等. 舟山多端柔性直流输电工程综述[J]. 电网与清洁能源, 2015, 31(2): 33-38 GAO Qiang, LIN Ye, HUANG Lichao, et al. An overview of Zhoushan VSC-MTDC transmission project[J]. Power System and Clean Energy, 2015, 31(2): 33-38 [48] MACHTM 直流输电控制与保护系统 [EB/OL]. (2018-11-26)[2020-03-13].https://library.e.abb.com/public/56723f36377446198418063b77dd01f5/MACH%20Introduction%20for%20ACW2018_cn_Final_s.pdf. [49] ANDERSSON M, WANG Xun. Advanced LCC HVDC control with MACH3: Improved commutation failure prediction, and additional functionality for 800 kV UHVDC [C]//International HVDC Conference, 30 Oct - 02 November 2018, Gwangju, South Korea, 2018: 1–4. [50] WESTERWELLER T, FRIEDRICH K, ARMONIES U, et al. Trans bay cable- world’s first HVDC system using multilevel voltage-sourced converter[C]// CIGRE Session. Paris: CIGRE, 2010: B4-101. [51] SIMATIC TDC hardware System Manual.[EB/OL]. (2018-10-04)[2020-03-13].https://support.industry.siemens.com/cs/attachments/8776697/tdc_hardware_en-US_en-US.pdf?download=true. [52] 刘盼盼, 荆龙, 吴学智, 等. 一种MMC-MTDC系统新型协调控制策略[J]. 电网技术, 2016, 40(1): 64-69 LIU Panpan, JING Long, WU Xuezhi, et al. A new coordinated control strategy for MMC-MTDC system and stability analysis[J]. Power System Technology, 2016, 40(1): 64-69 [53] 邓银秋, 汪震, 韩俊飞, 等. 适用于海上风电接入的多端柔直网内不平衡功率优化分配控制策略[J]. 中国电机工程学报.[网络首发日期: 2020-03-05]https://doi.org/10.13334/j.0258-8013.pcsee.182565. DENG Yinqiu, WANG Zhen, HAN Junfei, et al. Control Strategy on Optimal Redistribution of Unbalanced Power for Offshore Wind Farms Integrated MMC-MTDC. Proceedings of the CSEE. [54] 董桓锋, 唐庚, 侯俊贤, 等. 海上风电接入多端柔性直流输电系统中换流站退出运行时直流功率再分配策略[J]. 电网技术, 2017, 41(5): 1398-1406 DONG Huanfeng, TANG Geng, HOU Junxian, et al. Optimized power redistribution of VSC-MTDC transmissions with offshore wind farms integrated after onshore converter outage[J]. Power System Technology, 2017, 41(5): 1398-1406 [55] 杨悦, 李国庆. 基于VSC-HVDC的海上风电小干扰稳定控制[J]. 电工技术学报, 2016, 31(13): 101-110 YANG Yue, LI Guoqing. The small signal stability control of offshore wind farm based on VSC-HVDC[J]. Transactions of China Electrotechnical Society, 2016, 31(13): 101-110 [56] 陈鹤林, 徐政, 唐庚, 等. 海上风电场MMC-HVDC并网系统暂态行为分析[J]. 电力系统自动化, 2014, 38(12): 112-118 CHEN Helin, XU Zheng, TANG Geng, et al. Transient behavior analysis of offshore wind farm integration system with MMC-HVDC[J]. Automation of Electric Power Systems, 2014, 38(12): 112-118 [57] 吕敬, 蔡旭, 张占奎, 等. 海上风电场经MMC-HVDC并网的阻抗建模及稳定性分析[J]. 中国电机工程学报, 2016, 36(14): 3771-3781 Lü Jing, CAI Xu, ZHANG Zhankui, et al. Impedance modeling and stability analysis of MMC-based HVDC for offshore wind farms[J]. Proceedings of the CSEE, 2016, 36(14): 3771-3781 [58] HERNANDEZ MANCHOLA A, PRIEBE T, H?LZER M, et al. VSC HVDC active damping for the Sylwin 1 offshore wind power plants[J]. The Journal of Engineering, 2019, 2019(18): 4748-4753. [59] 邵冰冰, 赵书强, 高本锋, 等. 多直驱风机经VSC-HVDC 并网系统场内/场网次同步振荡特性分析[J]. 中国电机工程学报, 2020, 40(12): 3835-3847 SHAO Bingbing, ZHAO Shuqiang, GAO Benfeng, et al. Inside-wind-farm/wind-farm-grid sub-synchronous oscillation characte- ristics analysis in multiple D-PMSGs interfaced with VSC-HVDC system[J]. Proceedings of the CSEE, 2020, 40(12): 3835-3847 [60] BUCHHAGEN C, RAUSCHER C, MENZE A, et al. BorWin1-first experiences with harmonic interactions in converter dominated grids [C]//International ETG Congress 2015; Die Energiewende-Blueprints for the new energy age. VDE, 2015: 1-7. [61] 边晓燕, 王本利, 陈建平, 等. 改进的DFIG与VSC-HVDC协调控制改善风电场低电压穿越能力[J]. 电力系统保护与控制, 2016, 44(1): 9-16 BIAN Xiaoyan, WANG Benli, CHEN Jianping, et al. Improvement of low voltage ride through capability of wind farm using coordinated control of the improved DFIG and VSC-HVDC[J]. Power System Protection and Control, 2016, 44(1): 9-16 [62] 蔡婷婷, 穆钢, 严干贵, 等. 提高海上风电场经MMC联网系统故障穿越能力的柔性泄能电阻控制策略[J]. 电网技术, 2020, 44(1): 166-173 CAI Tingting, MU Gang, YAN Gangui, et al. A flexible control strategy of breaking resistor to enhance fault-ride-through ability for offshore wind farms integrated to grid via MMC[J]. Power System Technology, 2020, 44(1): 166-173 [63] 姜山, 李国杰, 黄宁, 等. 多端VSC-HVDC风电送出系统的低电压穿越综合策略设计[J]. 全球能源互联网, 2019, 2(6): 572-580 JIANG Shan, LI Guojie, HUANG Ning, et al. Design of LVRT control strategy for multi-terminal VSC-HVDC of wind power outgoing transmission[J]. Journal of Global Energy Interconnection, 2019, 2(6): 572-580 [64] 李生虎, 朱国伟. 基于有功备用的风电机组一次调频能力及调频效果分析[J]. 电工电能新技术, 2015, 34(10): 28-33, 50 LI Shenghu, ZHU Guowei. Capability and effect of primary frequency regulation by wind turbine generators with active power reserve[J]. Advanced Technology of Electrical Engineering and Energy, 2015, 34(10): 28-33, 50 [65] ZHU J B, BOOTH C D, ADAM G P, et al. Inertia emulation control strategy for VSC-HVDC transmission systems[J]. IEEE Transactions on Power Systems, 2013, 28(2): 1277-1287. [66] 李生虎, 汪秀龙, 朱国伟. 海上风电场PMSG和VSC-HVDC综合调频概率评估[J]. 电力系统及其自动化学报, 2018, 30(7): 24-29 LI Shenghu, WANG Xiulong, ZHU Guowei. Probabilistic evaluation on frequency regulation of offshore wind farm PMSG and VSC-HVDC[J]. Proceedings of the CSU-EPSA, 2018, 30(7): 24-29 [67] 姚为正, 杨美娟, 张海龙, 等. VSC-HVDC受端换流器参与电网调频的VSG控制及其改进算法[J]. 中国电机工程学报, 2017, 37(2): 525-534 YAO Weizheng, YANG Meijuan, ZHANG Hailong, et al. VSG control and its modified algorithm for VSC-HVDC inverter participating grid's frequency regulation[J]. Proceedings of the CSEE, 2017, 37(2): 525-534 [68] 唐西胜, 陆海洋. 风电柔性直流并网及调频控制对电力系统功角稳定性的影响[J]. 中国电机工程学报, 2017, 37(14): 4027-4035, 4281 TANG Xisheng, LU Haiyang. Impact of VSC-HVDC based wind power on power system angle stability considered of frequency control[J]. Proceedings of the CSEE, 2017, 37(14): 4027-4035, 4281 [69] 陈铮铮, 赵鹏, 赵健康, 等. 国内外直流电缆输电发展与展望[J]. 全球能源互联网, 2018, 1(4): 487-495 CHEN Zhengzheng, ZHAO Peng, ZHAO Jiankang, et al. Review and prospect of DC cable transmission in the world[J]. Journal of Global Energy Interconnection, 2018, 1(4): 487-495 [70] 钟力生, 任海洋, 曹亮, 等. 挤包绝缘高压直流电缆的发展[J]. 高电压技术, 2017, 43(11): 3473-3489 ZHONG Lisheng, REN Haiyang, CAO Liang, et al. Development of high voltage direct current extruded cables[J]. High Voltage Engineering, 2017, 43(11): 3473-3489 [71] 525 kV extruded HVDC cable systems [EB/OL]. (2019-12-01)[2020- 01-19].https://www.nkt.com/products-solutions/high-voltage-cable-solutions/innovation/525-kv-extruded-hvdc-cable-systems. [72] JPS的直流XLPE电缆 [EB/OL].(2015-08)[2020-01-18].https://global-sei.cn/company/sei-world/2015/08/feature.html. [73] 谢书鸿, 傅明利, 尹毅, 等. 中国交联聚乙烯绝缘高压直流电缆发展的三级跳: 从160 kV到200 kV再到320 kV[J]. 南方电网技术, 2015, 9(10): 5-12 XIE Shuhong, FU Mingli, YIN Yi, et al. Triple Jumps of XLPE Insulated HVDC Cable Development in China: from 160 kV to 200 kV and then to 320 kV[J]. Southern Power System Technology, 2015, 9(10): 5-12 [74] 张洪亮, 张建民, 于洪淼, 等. 中国首根±525 kV XLPE绝缘直流电缆的设计与试验验证[J]. 南方电网技术, 2018, 12(1): 1-6 ZHANG Hongliang, ZHANG Jianmin, YU Hongmiao, et al. Design and test verification of China's first ±525 kV XLPE insulated DC cable[J]. Southern Power System Technology, 2018, 12(1): 1-6 [75] 王海田, 雷宪章, 周明瑜, 等. 基于国产基料的交联聚乙烯高压直流电缆绝缘材料电性能研究[J]. 中国电机工程学报, 2019, 39(13): 3980-3989 WANG Haitian, LEI Xianzhang, ZHOU Mingyu, et al. Research on electrical performances of HVDC cross-linked polyethylene cable using Chinese base material[J]. Proceedings of the CSEE, 2019, 39(13): 3980-3989 [76] CHEN G, HAO M, XU Z Q, et al. Review of high voltage direct current cables[J]. CSEE Journal of Power and Energy Systems, 2015, 1(2): 9-21. [77] NordLink, The North Sea (Norway-Germany)[EB/OL]. (2019-12-01)[2020-01-18]https://www.nkt.com/references/nordlink-the-north-sea-norway-germany. [78] Prysmian wins first UK - Denmark submarine connection[EB/OL].(2019-07-23)[2020-01-18]https://www.prysmiangroup.com/en/insight/telecoms/prysmian-wins-first-uk-denmark-submarine-connection. [79] 于昊洋, 张艳, 陈正曦, 等. 中国—韩国—日本跨国联网构建方案及经济性研究[J]. 全球能源互联网, 2018, 1(增刊1): 203-212 YU Haoyang, ZHANG Yan, CHEN Zhengxi, et al. Construction scheme and economic analysis of China-Korea-Japan interconnection project[J]. Journal of Global Energy Interconnection, 2018, 1(S1): 203-212 [80] 杜伯学, 李忠磊, 杨卓然, 等. 高压直流交联聚乙烯电缆应用与研究进展[J]. 高电压技术, 2017, 43(2): 344-354 DU Boxue, LI Zhonglei, YANG Zhuoran, et al. Application and research progress of HVDC XLPE cables[J]. High Voltage Engineering, 2017, 43(2): 344-354 [81] 宋全刚, 肖晋, 贾贞, 等. 基于海上平台的柔直换流阀功率模块防腐设计[J]. 新技术新工艺, 2019(8): 27-29 SONG Quangang, XIAO Jin, JIA Zhen, et al. Anticorrosion design of power module of flexible HVDC converter valve based on offshore platform[J]. New Technology & New Process, 2019(8): 27-29 [82] 张立彤. 海上风电变压器的防腐涂装[J]. 中国涂料, 2014, 29(1): 59-62 ZHANG Litong. Anti-corrosive coating for offshore wind power transformer[J]. China Coatings, 2014, 29(1): 59-62 [83] 赵云, 郑明, 郑建伟. 海上升压站主变压器冷却方式选择[J]. 南方能源建设, 2015, 2(3): 91-94, 100 ZHAO Yun, ZHENG Ming, ZHENG Jianwei. Selection of main transformer cooling system in offshore substation[J]. Southern Energy Construction, 2015, 2(3): 91-94, 100 [84] 迟永宁, 梁伟, 张占奎, 等. 大规模海上风电输电与并网关键技术研究综述[J]. 中国电机工程学报, 2016, 36(14): 3758-3771 CHI Yongning, LIANG Wei, ZHANG Zhankui, et al. An overview on key technologies regarding power transmission and grid integration of large scale offshore wind power[J]. Proceedings of the CSEE, 2016, 36(14): 3758-3771 [85] XU L, YAO L Z, BAZARGAN M. DC grid management of a multi-terminal HVDC transmission system for large offshore wind farms [C]//2009 International Conference on Sustainable Power Generation and Supply, April 6–7, 2009. Nanjing. IEEE, 2009: 1–7.[LinkOut] [86] 汤广福, 罗湘, 魏晓光. 多端直流输电与直流电网技术[J]. 中国电机工程学报, 2013, 33(10): 8-17, 24 TANG Guangfu, LUO Xiang, WEI Xiaoguang. Multi-terminal HVDC and DC-grid technology[J]. Proceedings of the CSEE, 2013, 33(10): 8-17, 24 [87] 孙蔚, 姚良忠, 李琰, 等. 考虑大规模海上风电接入的多电压等级直流电网运行控制策略研究[J]. 中国电机工程学报, 2015, 35(4): 776-785 SUN Wei, YAO Liangzhong, LI Yan, et al. Study on operation control strategies of DC grid with multi-voltage level considering large offshore wind farm grid integration[J]. Proceedings of the CSEE, 2015, 35(4): 776-785 [88] Increase in North Sea capacities [EB/OL].(2019-01-11)[2020-01-18].https://www.tscnet.eu/tag/wind-energy/page/4/. [89] ABB power systems offshore wind connection[EB/OL]. (2016-11-02)[2019-01-18].https://new.abb.com/docs/librariesprovider46/pw2016/seminars/r206-en-abb_offshore_wind_connection_by_hvdc_reformated.pdf?sfvrsn=2. [90] 黄子果. 海上风电机组机型发展的技术路线对比[J]. 中外能源, 2019, 24(8): 29-35 HUANG Ziguo. Comparison of technical routes for the development of offshore wind turbines[J]. Sino-Global Energy, 2019, 24(8): 29-35 [91] 江道灼, 谷泓杰, 尹瑞, 等. 海上直流风电场研究现状及发展前景[J]. 电网技术, 2015, 39(9): 2424-2431 JIANG Daozhuo, GU Hongjie, YIN Rui, et al. Research status and developing prospect of offshore wind farm with pure DC systems[J]. Power System Technology, 2015, 39(9): 2424-2431 [92] NISHIKATA S, TATSUTA F. A new interconnecting method for wind turbine/generators in a wind farm and basic performances of the integrated system[J]. IEEE Transactions on Industrial Electronics, 2010, 57(2): 468-475. [93] 孙冠群, 蔡慧, 陈卫民. 一种海上风电场全直流电能汇聚设计方案[J]. 中国电力, 2016, 49(3): 188-192 SUN Guanqun, CAI Hui, CHEN Weimin. A scheme of full DC power convergence for offshore wind farms[J]. Electric Power, 2016, 49(3): 188-192 [94] 蔡旭, 施刚, 迟永宁, 等. 海上全直流型风电场的研究现状与未来发展[J]. 中国电机工程学报, 2016, 36(8): 2036-2048 CAI Xu, SHI Gang, CHI Yongning, et al. Present status and future development of offshore all-DC wind farm[J]. Proceedings of the CSEE, 2016, 36(8): 2036-2048 |
[1] | 汪林光, 李旭涛, 任勇, 谢小荣. 基于元启发式算法的新能源电力系统振荡稳定性最差工况搜索方法[J]. 中国电力, 2025, 58(3): 65-72. |
[2] | 赵静波, 李文博, 朱鑫要, 孙庆斌, 郝全睿. 海上风电经柔直送出系统受端扰动自适应控制策略[J]. 中国电力, 2025, 58(1): 26-38. |
[3] | 周啸, 阳岳希, 寇龙泽, 李云丰, 钱学威, 郝捷, 景卫哲. 模块化多电平柔性直流换流器高频振荡抑制策略与参数优化设计[J]. 中国电力, 2025, 58(1): 50-60. |
[4] | 丰力, 张莲梅, 韦家佳, 邓长虹, 李果, 尹家悦. 基于全生命周期经济评估的海上风电发展与思考[J]. 中国电力, 2024, 57(9): 80-93. |
[5] | 刘钟淇, 刘耀, 侯金鸣. 以深远海风电为核心的能源岛能源外送经济性分析[J]. 中国电力, 2024, 57(9): 94-102. |
[6] | 姜文瑾, 刘巧妹, 杨晓东, 阙定飞, 沈豫, 黄夏楠, 赖振华. 计及气固两相储氢特性的海上风电-多元储能系统优化配置[J]. 中国电力, 2024, 57(9): 103-112. |
[7] | 黄宁泊, 高建伟, 许传博, 徐选华, 赵舒通, 缑迅杰, 姜晓静. 基于经验挖掘与混合语言的海上风电制氢加氢港口选址研究[J]. 中国电力, 2024, 57(9): 113-123. |
[8] | 叶婧, 蔡俊文, 张磊, 周广浩, 何杰辉, 翟学. 考虑海缆实际载流量的海上风电集电系统拓扑优化[J]. 中国电力, 2024, 57(7): 173-181. |
[9] | 彭茂兰, 冯雷, 王宇, 徐李清, 赵薇, 郭春义. 基于桥臂调制波调整的多端柔直系统直流过电压抑制策略[J]. 中国电力, 2024, 57(4): 171-181. |
[10] | 杨帆, 卫水平, 任意, 陈秭龙, 乐健. 变权-混合决策评估的复合功能并网逆变器多目标协同优化控制方法[J]. 中国电力, 2024, 57(3): 113-125. |
[11] | 阎洁, 杨佳琳, 王航宇, 卢姣阳, 刘永前, 张磊. 基于风况预测误差自适应的海上风电场尾流偏转控制方法[J]. 中国电力, 2024, 57(3): 190-196. |
[12] | 王海燕, 钱林宇. 基于NGO-VMD的混合储能功率分配策略[J]. 中国电力, 2024, 57(11): 119-128. |
[13] | 刘曌, 孙庆凯, 许泽凯, 吴潇雨, 王小君, 吕金玲. 能源互联网中的数字孪生技术体系、应用与挑战[J]. 中国电力, 2024, 57(1): 230-243. |
[14] | 徐佳, 杨树德, 张新闻. 基于并网电流谐波反馈的有源阻尼策略[J]. 中国电力, 2023, 56(8): 126-135. |
[15] | 叶婧, 周广浩, 张磊, 杨莉, 翟学, 蔡俊文. 考虑馈线交叉规避的海上风电场海缆路径优化[J]. 中国电力, 2023, 56(6): 167-175. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||