[1] KONG W C, DONG Z Y, MA J, et al. An extensible approach for non-intrusive load disaggregation with smart meter data[J]. IEEE Transactions on Smart Grid, 2018, 9(4): 3362-3372. [2] PONOĆKO J, MILANOVIĆ J V. Application of data analytics for advanced demand profiling of residential load using smart meter data[C]//2017 IEEE Manchester PowerTech. Manchester, UK: IEEE, 2017: 1-6. [3] WEN L L, ZHOU K L, YANG S L. A shape-based clustering method for pattern recognition of residential electricity consumption[J]. Journal of Cleaner Production, 2019, 212: 475-488. [4] ZHOU K L, YANG S L, SHAO Z. Household monthly electricity consumption pattern mining: a fuzzy clustering-based model and a case study[J]. Journal of Cleaner Production, 2017, 141: 900-908. [5] 赵莉, 候兴哲, 胡君, 等. 基于改进k-means算法的海量智能用电数据分析[J]. 电网技术, 2014, 38(10): 2715-2720 ZHAO Li, HOU Xingzhe, HU Jun, et al. Improved k-means algorithm based analysis on massive data of intelligent power utilization[J]. Power System Technology, 2014, 38(10): 2715-2720 [6] 朱文俊, 王毅, 罗敏, 等. 面向海量用户用电特性感知的分布式聚类算法[J]. 电力系统自动化, 2016, 40(12): 21-27 ZHU Wenjun, WANG Yi, LUO Min, et al. Distributed clustering algorithm for awareness of electricity consumption characteristics of massive consumers[J]. Automation of Electric Power Systems, 2016, 40(12): 21-27 [7] 康旭源, 燕达, 孙红三, 等. 居住建筑用电数据分析与随机模型构建[J]. 建筑科学, 2019, 35(12): 1-11 KANG Xuyuan, YAN Da, SUN Hongsan, et al. Analysis and stochastic modelling of electricity consumption in urban residential buildings[J]. Building Science, 2019, 35(12): 1-11 [8] ZHAO Q, LI H, WANG X, et al. Analysis of users’ electricity consumption behavior based on ensemble clustering[J]. Global Energy Interconnection, 2019, 2(6): 480-489. [9] VALOR E, MENEU V, CASELLES V. Daily air temperature and electricity load in Spain[J]. Journal of Applied Meteorology, 2001, 40(8): 1413-1421. [10] BECCALI M, CELLURA M, LO BRANO V, et al. Forecasting daily urban electric load profiles using artificial neural networks[J]. Energy Conversion and Management, 2004, 45(18/19): 2879-2900. [11] LÓPEZ J M G, POURESMAEIL E, CAÑIZARES C A, et al. Smart residential load simulator for energy management in smart grids[J]. IEEE Transactions on Industrial Electronics, 2019, 66(2): 1443-1452. [12] LI R R, JIANG P, YANG H F, et al. A novel hybrid forecasting scheme for electricity demand time series[J]. Sustainable Cities and Society, 2020, 55: 102036. [13] JIANG P, LI R R, LIU N N, et al. A novel composite electricity demand forecasting framework by data processing and optimized support vector machine[J]. Applied Energy, 2020, 260: 114243. [14] MASOUMI A, JABARI F, GHASSEM ZADEH S, et al. Long-term load forecasting approach using dynamic feed-forward back-propagation artificial neural network[M]//Studies in Systems, Decision and Control. Cham: Springer International Publishing, 2020: 233-257. [15] BAETENS R, SAELENS D. Modelling uncertainty in district energy simulations by stochastic residential occupant behaviour[J]. Journal of Building Performance Simulation, 2016, 9(4): 431-447. [16] 陈智锴. 基于系统动力学的工业园区电力需求分析与预测[D]. 北京: 北京交通大学, 2019. CHEN Zhikai. Analysis of power demand for industrial park based on system dynamics and its forecast[D]. Beijing: Beijing Jiaotong University, 2019. [17] 李琛, 郭文利, 吴进, 等. 基于BP神经网络的北京夏季日最大电力负荷预测方法[J]. 气候与环境研究, 2019, 24(1): 135-142 LI Chen, GUO Wenli, WU Jin, et al. A method for prediction of daily maximum electric loads in the summer in Beijing based on the BP neural network[J]. Climatic and Environmental Research, 2019, 24(1): 135-142 [18] 闫重熙, 陈皓. 基于改进天牛须搜索算法优化LSSVM短期电力负荷预测方法研究[J]. 电测与仪表, 2020, 57(6): 6-11, 18 YAN Chongxi, CHEN Hao. Research of LSSVM short-term load forecasting method based on the improved beetle antennae search algorithm[J]. Electrical Measurement & Instrumentation, 2020, 57(6): 6-11, 18 [19] 罗澍忻, 陆秋瑜, 靳冰洁, 等. 考虑相关因素的长短时记忆网络短期负荷预测方法[J]. 机电工程技术, 2019, 48(12): 126-129 LUO Shuxin, LU Qiuyu, JIN Bingjie, et al. Short-term load forecasting based on long short-term memory network considering related factors[J]. Mechanical & Electrical Engineering Technology, 2019, 48(12): 126-129 [20] 陈振宇, 刘金波, 李晨, 等. 基于LSTM与XGBoost组合模型的超短期电力负荷预测[J]. 电网技术, 2020, 44(2): 614-620 CHEN Zhenyu, LIU Jinbo, LI Chen, et al. Ultra short-term power load forecasting based on combined LSTM-XGBoost model[J]. Power System Technology, 2020, 44(2): 614-620 [21] 黄一楠. 探讨支持向量机在电力负荷预测中的运用[J]. 科技风, 2017(20): 145 [22] SINGH M, GUPTA S. Application of neural networks to power systems for electrical load forecasting[J]. CSVTU Research Journal on Engineering and Technology, 2020, 8(2): 152-159. [23] TAN Y, CHEN H, LIU W, et al. Repulsive firefly algorithm-based optimal switching device placement in power distribution systems[J]. Global Energy Interconnection, 2019, 2(6): 490-496. [24] LIU H W, LI X L, LI J Y, et al. Efficient outlier detection for high-dimensional data[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2018, 48(12): 2451-2461. [25] LI C D, DING Z X, ZHAO D B, et al. Building energy consumption prediction: an extreme deep learning approach[J]. Energies, 2017, 10(10): 1525. [26] RUMMELHART D E. Parallel Distributed Processing[M]. US: MIT Press, 1986: 318-62. [27] COVER T, HART P. Nearest neighbor pattern classification[J]. IEEE Transactions on Information Theory, 1967, 13(1): 21-27. [28] ENGLAND R, BEYNON D. A remark on as 136: a K-means clustering algorithm[J]. Journal of the Royal Statistical Society: Series C (Applied Statistics), 1981, 30(3): 355-356. [29] CALIŃSKI T, HARABASZ J. A dendrite method for cluster analysis[J]. Communications in Statistics, 1974, 3(1): 1-27. [30] 刘鑫. 通化地区电网规划设计与分析[D]. 北京: 华北电力大学(北京), 2016. LIU Xin. Tonghua district power grid planning design and analysis[D]. Beijing: North China Electric Power University, 2016 [31] SHAYEGHI H, GHASEMI A, MORADZADEH M, et al. Simultaneous day-ahead forecasting of electricity price and load in smart grids[J]. Energy Conversion and Management, 2015, 95: 371-384. |