[1] 张化冰. 能源互联网支撑能源转型——访国家电网全球能源互联网研究院院长、中国工程院院士汤广福[J]. 电力设备管理, 2020(2): 25-28 ZHANG Huabing. Energy internet supports energy transformation-interview with tang guangfu, president of state grid global energy internet research institute and academician of chinese academy of engineering[J]. Power Equipment Management, 2020(2): 25-28 [2] 刘敦楠, 曾鸣, 黄仁乐, 等. 能源互联网的商业模式与市场机制(二)[J]. 电网技术, 2015, 39(11): 3057-3063 LIU Dunnan, ZENG Ming, HUANG Renle, et al. Business model and market mechanism of energy internet (II)[J]. Power System Technology, 2015, 39(11): 3057-3063 [3] AMATO G, STRACCIA U. User profile modeling and applications to digital libraries[C]//European Conference on Research and Advanced Technology for Digital Libraries. Springer-Verlag, 1999: 184-197. [4] QUINTANA R M, HALEY S R, LEVICK A, et al. The persona party: using personas to design for learning at scale[C]//CHI Conference Extended. 2017: 933-941. [5] 张钧. 基于用户画像的图书馆知识发现服务研究[J]. 图书与情报, 2017(6): 60-63 ZHANG Jun. Research on library knowledge discovery service based on user portrait[J]. Library and Information, 2017(6): 60-63 [6] 王智囊. 基于用户画像的医疗信息精准推荐的研究[D]. 成都: 电子科技大学, 2016. WANG Zhinang. Research on accurate recommendation of medical information based on user portrait[D]. Chengdu: University of Electronic Science and Technology, 2016. [7] NASRAOUI O, SOLIMAN M, SAKA E, et al. A web usage mining framework for mining evolving user profiles in dynamic web sites[J]. IEEE Transactions on Knowledge & Data Engineering, 2012, 3(4): 202-215. [8] ADOMAVICIUS G, TUZHILIN A. Using data mining methods to build customer profiles[J]. Computer, 2001, 34(2): 74-82. [9] 林森, 欧阳柳. 基于大数据理论的电力客户标签体系构建[J]. 电气技术, 2016, 17(12): 98-101 LIN Sen, OUYANG Liu. Construction of power customer label system based on big data theory[J]. Electrical Technology, 2016, 17(12): 98-101 [10] 周李, 赵露君, 高卫国. 稀疏编码模型在电力用户异常用电行为探测中的应用研究[J]. 电网技术, 2015, 39(11): 3182-3188 ZHOU Li, ZHAO Lujun, GAO Weiguo. Research on the application of sparse coding model in detecting abnormal electricity consumption behavior of power users[J]. Power System Technology, 2015, 39(11): 3182-3188 [11] 涂莹, 林士勇, 欧阳柳, 等. 基于市场细分的逻辑回归模型在电费回收风险预测中的应用研究[J]. 电力需求侧管理, 2016, 18(4): 46-49 TU Ying, LIN Shiyong, OUYANG Liu, et al. Research on application of logistic regression model based on market segmentation in risk forecast of electricity charge recovery[J]. Power Demand Side Management, 2016, 18(4): 46-49 [12] 徐涛, 黄莉, 李敏蕾, 等. 基于多维细粒度行为数据的居民用户画像方法研究[J]. 电力需求侧管理, 2019(3): 47-52,58 XU Tao, HUANG Li, LI Minlei, et al. Research on portrait method of resident users based on multidimensional fine-grained behavior data[J]. Power Demand Side Management, 2019(3): 47-52,58 [13] 傅军, 许鑫, 罗迪, 等. 电力用户行为画像构建技术研究[J]. 电气应用, 2018(13): 18-23 FU Jun, XU Xin, LUO Di, et al. Research on the construction technology of power user behavior portrait[J]. Electrical Application, 2018(13): 18-23 [14] 胡鑫, 王刚. 网络空间生态成熟度建模[J]. 系统工程与电子技术, 2018, 40(10): 2363-2369 HU Xin, WANG Gang. Modeling the ecological maturity of cyberspace[J]. Systems Engineering and Electronics, 2018, 40(10): 2363-2369 [15] 傅为忠, 徐丽君. 区域工业绿色发展成熟度动态评价-基于熵值修正G1 法和距离协调度改进模型的实证分析[J]. 工业技术经济, 2018(3): 61-69 FU Weizhong, XU Lijun. Dynamic evaluation on maturity of regional industrial green development-empirical analysis based on entropy modified G1 method and distance coordination improvement model[J]. Industrial Technology and Economy, 2018(3): 61-69 [16] SCHUMACHER A, EROL S, SIHN W. A maturity model for assessing industry 4.0 readiness and maturity of manufacturing enterprises[J]. Procedia CIRP, 2016, 52: 161-166. [17] GOTTSCHALK P, HANS S S. Maturity model for IT outsourcing relationships[J]. Industrial Management & Data Systems, 2006, 106(2): 200-212. [18] 尚芳屹. 组合预测在区域级饱和负荷预测中的应用[D]. 上海: 上海交通大学, 2013. SHANG Fangyi. Application of combination forecast in regional saturation load forecast[D]. Shanghai: Shanghai Jiaotong University, 2013. [19] ZHENG L, HU W, MIN Y. Raw wind data preprocessing: a data-mining approach[J]. IEEE Transactions on Sustainable Energy, 2015, 6(1): 11-19. [20] KWAC J, FLORA J, RAJAGOPAL R. Household energy consumption segmentation using hourly data[J]. IEEE Transactions on Smart Grid, 2014, 5(1): 420-430. |