[1] 张军亮. 基于数据建模的直接空冷机组最佳背压研究[D]. 北京:华北电力大学, 2016. [2] 金生祥, 王清. 空冷机组混合冷却的综合应用及发展前景[J]. 中国电力, 2013, 46(6):5-9 JIN Shengxiang, WANG Qing. Comprehensive application and development prospect of hybridcooling for air cooling units[J]. Electric Power, 2013, 46(6):5-9 [3] 王玮, 刘慧超, 杨巍, 等. 基于背压连续调节的火电机组变负荷控制[J]. 热力发电, 2017, 46(5):56-62 WANG Wei, LIU Huichao, YANG Wei, et al. Control of variable load of thermal power unit based on continuous control of back pressure[J]. Thermal Power Generation, 2017, 46(5):56-62 [4] 王宏宇, 白焰. 电厂直接空冷系统汽轮机背压的控制方法[J]. 化工自动化及仪表, 2016, 43(6):584-586 WANG Hongyu, BAI Yan. Control method of steam turbine back pressure in direct air cooling system of power plants[J]. Chemical Industry Automation and Instrumentation, 2016, 43(6):584-586 [5] 高建强, 陈冠兵, 薛楠楠. 直接空冷机组经济背压计算模型及其应用[J]. 动力工程学报, 2014, 34(2):153-158 GAO Jianqiang, CHEN Guanbing, XUE Nannan. An economical backpressure calculation model of direct air-cooling unit and its application[J]. Chinese Journal of Power Engineering, 2014, 34(2):153-158 [6] 王彪, 刘格. 基于BP神经网络的直接空冷凝汽器背压预测[J]. 电力科学与工程, 2014, 30(5):67-70 WANG Biao, LIU Ge. Predicting the back pressure of direct air-cooled condenser based on BP neural network[J]. Power Science and Engineering, 2014, 30(5):67-70 [7] 王琦, 白建云, 王欣峰, 等. CFB锅炉脱硫脱硝系统多目标优化[J]. 中国电力, 2017, 50(7):109-114, 121 WANG Qi, BAI Jianyun, WANG Xinfeng, et al. Multi-objective optimization of CFB boiler desulfurization and denitrification system[J]. Electric Power, 2017, 50(7):109-114, 121 [8] 任羽婧. 基于进化算法的动态多目标优化[D]. 西安:西安电子科技大学, 2013. [9] 曾德良, 简一帆. 火电厂负荷分配的多目标优化算法[J]. 热力发电, 2017, 46(5):98-104 ZENG Deliang, JIAN Yifan. Multi-objective optimization algorithm for load distribution in thermal power plants[J]. Thermal Power Generation, 2017, 46(5):98-104 [10] 王艳艳. 基于风功率预测的风电场混合储能容量多目标优化配置[D]. 太原:山西大学, 2016. [11] 韩璞. 现代工程控制论[M]. 北京:中国电力出版社, 2017. [12] 葛成余, 周博曦, 朱颂怡, 等. 基于遗传算法的区域配电网单线图的自动布局算法[J]. 中国电力, 2016, 49(12):53-57 GE Chengyu, ZHOU Bojun, ZHU Songyi, et al. Automatic layout algorithm for single line map of regional distribution network based on genetic algorithm[J]. Electric Power, 2016, 49(12):53-57 [13] 叶远芹. 基于混沌遗传算法的车间设备动态布局多目标优化研究[D]. 西安:西安建筑科技大学, 2017. [14] 高建强, 肖雄. 某300MW直接空冷机组风机运行调整研究[J]. 汽轮机技术, 2017, 59(3):221-223 GAO Jianqiang, XIAO Xiong. Research on fan operation adjustment of a 300MW direct air cooling unit[J]. Turbine Technology, 2017, 59(3):221-223 [15] 张学海. 600 MW直接空冷机组背压修正曲线及经济运行背压研究[J]. 华电技术, 2017, 39(3):1-4, 77 ZHANG Xuehai. Study on back pressure correction curve and economic operation back pressure of 600 MW direct air cooling unit[J]. Huadian Technology, 2017, 39(3):1-4, 77 [16] 王丽, 张义江, 郭民臣, 等. 积灰及迎面风速对直接空冷机组性能的影响[J]. 中国电力, 2015, 48(2):21-26 WANG Li, ZHANG Yijiang, GUO Minchen, et al. Effect of dust accumulation and oncoming wind speed on the performance of direct air-cooled units[J]. Electric Power, 2015, 48(2):21-26 [17] 马海龙, 王运民, 张希富, 等. 电厂凝汽式汽轮机最佳运行背压的确定方法[J]. 汽轮机技术, 2013, 55(2):118-120 MA Hailong, WANG Yunmin, ZHANG Xifu, et al. Determination method of optimal operating back pressure for condensing steam turbine in power plant[J]. Turbine Technology, 2013, 55(2):118-120 [18] 许宁, 李永华, 杨海生, 等. 直接空冷机组空冷岛风机优化试验研究[J]. 电力科学与工程, 2016, 32(4):66-70 XU Ning, LI Yonghua, YANG Haisheng, et al. Experimental research on air cooling fan of direct air cooling unit[J]. Electric Power Science and Engineering, 2016, 32(4):66-70 [19] 高沛, 张学镭. 环境风对直接空冷凝汽器性能的影响及主导因素分析[J]. 中国电力, 2013, 46(11):113-118,123 GAO Pei, ZHANG Xuelei. Effect of ambient wind on the performance of direct air-cooled condenser and analysis of its leading factors[J]. Electric Power, 2013, 46(11):113-118,123 |