中国电力 ›› 2024, Vol. 57 ›› Issue (8): 145-151.DOI: 10.11930/j.issn.1004-9649.202304103
陈胜1(), 张洪略1, 夏天1, 杨雪2(
), 张文军3, 颜伟2
收稿日期:
2023-05-11
出版日期:
2024-08-28
发布日期:
2024-08-24
作者简介:
陈胜(1986—),男,硕士,高级工程师,从事电网调度自动化管理研究,E-mail:568786829@qq.com基金资助:
Sheng CHEN1(), Honglue ZHANG1, Tian XIA1, Xue YANG2(
), Wenjun ZHANG3, Wei YAN2
Received:
2023-05-11
Online:
2024-08-28
Published:
2024-08-24
Supported by:
摘要:
近年来电网开始采用控制性能标准变式(transformational control performance standard,TCPS)考核各区域的自动发电控制(automatic generation control,AGC)水平,然而现有研究仅考虑了控制性能标准(control performance standard,CPS)的考核。鉴于此,提出了一种考虑TCPS的AGC机组动态优化模型,该模型以二次调频综合调整费用最小为目标,以系统功率平衡和TCPS考核为约束。针对新模型中TCPS考核约束的分段函数进行线性化,实现了模型的高效求解。基于修改的IEEE算例、工程中的AGC滞后控制策略和CPS标准,仿真验证了模型的有效性。
陈胜, 张洪略, 夏天, 杨雪, 张文军, 颜伟. 考虑TCPS考核约束的AGC机组动态优化模型[J]. 中国电力, 2024, 57(8): 145-151.
Sheng CHEN, Honglue ZHANG, Tian XIA, Xue YANG, Wenjun ZHANG, Wei YAN. Dynamic Optimization Model of AGC Units Considering TCPS Assessment Constraints[J]. Electric Power, 2024, 57(8): 145-151.
机组 编号 | 机组 类型 | 初始出 力/MW | 爬坡速率/ (MW·min–1) | 最小持续爬 坡时间/min | 计划电量调整费用系 数/(元·(MW·min)–1) | 爬坡里程费用系数/ (元·(MW·min)–1) | 机组单位调节功 率/(MW·Hz–1) | 最大出 力/MW | 最小出 力/MW | |||||||||
1 | AGC | 266.8 | 10~30 | 4 | 8.33 | 8.33 | 20 | 500 | 100 | |||||||||
2 | AGC | 120.0 | 10~50 | 2 | 4.17 | 4.17 | 25 | 500 | 100 | |||||||||
3 | AGC | 168.0 | 10~30 | 3 | 8.33 | 8.33 | 20 | 500 | 100 | |||||||||
4 | 非AGC | 175.3 | — | — | — | — | 20 | — | — | |||||||||
5 | 非AGC | 200.5 | — | — | — | — | 20 | — | — |
表 1 火电机组数据
Table 1 Data for thermal power units
机组 编号 | 机组 类型 | 初始出 力/MW | 爬坡速率/ (MW·min–1) | 最小持续爬 坡时间/min | 计划电量调整费用系 数/(元·(MW·min)–1) | 爬坡里程费用系数/ (元·(MW·min)–1) | 机组单位调节功 率/(MW·Hz–1) | 最大出 力/MW | 最小出 力/MW | |||||||||
1 | AGC | 266.8 | 10~30 | 4 | 8.33 | 8.33 | 20 | 500 | 100 | |||||||||
2 | AGC | 120.0 | 10~50 | 2 | 4.17 | 4.17 | 25 | 500 | 100 | |||||||||
3 | AGC | 168.0 | 10~30 | 3 | 8.33 | 8.33 | 20 | 500 | 100 | |||||||||
4 | 非AGC | 175.3 | — | — | — | — | 20 | — | — | |||||||||
5 | 非AGC | 200.5 | — | — | — | — | 20 | — | — |
控制区域频 率偏差系数/ (MW·(0.1 Hz)–1) | 互联电网频 率偏差系数/ (MW·(0.1 Hz)–1) | 1分钟频率控制 目标/Hz | 15分钟频率控制 目标/Hz | |||
15.4 375 | 92.625 | 0.019 473 | 0.024 039 | |||
系统频率偏差 上下限/Hz | 联络线功率偏差 上下限/MW | 控制区域负荷 单位调节功率/ (MW·Hz–1) | 互联电网单 位调节功率/ (MW·Hz–1) | |||
±0.2 | ±2 | 1.5 | 120 |
表 2 系统数据
Table 2 System data
控制区域频 率偏差系数/ (MW·(0.1 Hz)–1) | 互联电网频 率偏差系数/ (MW·(0.1 Hz)–1) | 1分钟频率控制 目标/Hz | 15分钟频率控制 目标/Hz | |||
15.4 375 | 92.625 | 0.019 473 | 0.024 039 | |||
系统频率偏差 上下限/Hz | 联络线功率偏差 上下限/MW | 控制区域负荷 单位调节功率/ (MW·Hz–1) | 互联电网单 位调节功率/ (MW·Hz–1) | |||
±0.2 | ±2 | 1.5 | 120 |
预测负荷 波动量/% | TCPS考核结果 | 二次调频综合调整费用 | ||||||||
滞后控 制策略 | 本文 模型 | 滞后控制 策略/元 | 本文模 型/元 | 费用 优化量/% | ||||||
–5 | 不通过 | 通过 | 111 | |||||||
–4 | 不通过 | 通过 | 191 | |||||||
–3 | 通过 | 通过 | 145 | |||||||
–2 | 不通过 | 通过 | 5 | |||||||
–1 | 不通过 | 通过 | 35 | |||||||
0 | 通过 | 通过 | 22 | |||||||
+1 | 通过 | 通过 | 32 | |||||||
+2 | 通过 | 通过 | 26 | |||||||
+3 | 通过 | 通过 | 23 | |||||||
+4 | 通过 | 通过 | 20 | |||||||
+5 | 通过 | 通过 | 19 |
表 3 2种策略下的TCPS考核结果和二次调频综合调整费用对比
Table 3 Comparison of TCPS assessment results and secondary frequency regulation comprehensive adjustment costs under two strategies
预测负荷 波动量/% | TCPS考核结果 | 二次调频综合调整费用 | ||||||||
滞后控 制策略 | 本文 模型 | 滞后控制 策略/元 | 本文模 型/元 | 费用 优化量/% | ||||||
–5 | 不通过 | 通过 | 111 | |||||||
–4 | 不通过 | 通过 | 191 | |||||||
–3 | 通过 | 通过 | 145 | |||||||
–2 | 不通过 | 通过 | 5 | |||||||
–1 | 不通过 | 通过 | 35 | |||||||
0 | 通过 | 通过 | 22 | |||||||
+1 | 通过 | 通过 | 32 | |||||||
+2 | 通过 | 通过 | 26 | |||||||
+3 | 通过 | 通过 | 23 | |||||||
+4 | 通过 | 通过 | 20 | |||||||
+5 | 通过 | 通过 | 19 |
图 1 本文模型和AGC滞后控制策略的二次调频综合调整费用
Fig.1 The secondary frequency regulation comprehensive adjustment cost of the proposed model and the AGC hysteresis control strategy
标准 | 计划电量调整 费用/元 | 爬坡里程 费用/元 | 二次调频综合调整 费用/元 | |||
TCPS | ||||||
CPS |
表 4 2种标准下的费用优化结果对比
Table 4 Comparison of cost optimization results under two standards
标准 | 计划电量调整 费用/元 | 爬坡里程 费用/元 | 二次调频综合调整 费用/元 | |||
TCPS | ||||||
CPS |
1 | 伍凌云, 何笠, 肖雄, 等. 直流系统附加频率控制器对AGC系统控制影响分析[J]. 中国电力, 2021, 54 (8): 68- 74. |
WU Lingyun, HE Li, XIAO Xiong, et al. The influence of UHVDC additional frequency controller on automatic generation control[J]. Electric Power, 2021, 54 (8): 68- 74. | |
2 | 胡泽春, 罗浩成. 大规模可再生能源接入背景下自动发电控制研究现状与展望[J]. 电力系统自动化, 2018, 42 (8): 2- 15. |
HU Zechun, LUO Haocheng. Research status and prospect of automatic generation control with integration of large-scale renewable energy[J]. Automation of Electric Power Systems, 2018, 42 (8): 2- 15. | |
3 |
IBRAHEEM, KUMAR P, KOTHARI D P. Recent philosophies of automatic generation control strategies in power systems[J]. IEEE Transactions on Power Systems, 2005, 20 (1): 346- 357.
DOI |
4 | 颜伟, 赵瑞锋, 赵霞, 等. 自动发电控制中控制策略的研究发展综述[J]. 电力系统保护与控制, 2013, 41 (8): 149- 155. |
YAN Wei, ZHAO Ruifeng, ZHAO Xia, et al. Review on control strategies in automatic generation control[J]. Power System Protection and Control, 2013, 41 (8): 149- 155. | |
5 | 刘永奇, 韩福坤. 华北电网自动发电控制综述[J]. 电网技术, 2005, 29 (18): 1- 5. |
LIU Yongqi, HAN Fukun. A survey on automatic generation control system in North China power grid[J]. Power System Technology, 2005, 29 (18): 1- 5. | |
6 | 刘梦欣, 王杰, 陈陈. 电力系统频率控制理论与发展[J]. 电工技术学报, 2007, 22 (11): 135- 145. |
LIU Mengxin, WANG Jie, CHEN Chen. Theory and development of power system frequency control[J]. Transactions of China Electrotechnical Society, 2007, 22 (11): 135- 145. | |
7 | 胡浩, 仲悟之, 陈艳波, 等. 自动发电控制系统控制及建模仿真综述[J]. 陕西电力, 2014, 42 (9): 62- 67. |
HU Hao, ZHONG Wuzhi, CHEN Yanbo, et al. Research survey on control, modeling, simulation and application of automatic generation control system[J]. Shaanxi Electric Power, 2014, 42 (9): 62- 67. | |
8 |
JALEELI N, VANSLYCK L S. NERC’s new control performance standards[J]. IEEE Transactions on Power Systems, 1999, 14 (3): 1092- 1099.
DOI |
9 | 汪德星. 华东电网实行CPS标准的探索[J]. 电力系统自动化, 2000, 24 (8): 41- 44. |
WANG Dexing. Study of CPS standards in East China power grid[J]. Automation of Electric Power Systems, 2000, 24 (8): 41- 44. | |
10 | 汪德星. 关于CPS应用的学术讨论[J]. 电力系统自动化, 2012, 36 (15): 73- 77. |
WANG Dexing. Academic discussions on CPS application[J]. Automation of Electric Power Systems, 2012, 36 (15): 73- 77. | |
11 | 巴宇, 刘娆, 李卫东. CPS及其考核在北美与国内的应用比较[J]. 电力系统自动化, 2012, 36 (15): 63- 72. |
BA Yu, LIU Rao, LI Weidong. Comparison of CPS and its assessment between North America and China[J]. Automation of Electric Power Systems, 2012, 36 (15): 63- 72. | |
12 | 赵霞, 叶晓斌, 杨仑, 等. 网省两级AGC机组协调调度的二层规划模型[J]. 电工技术学报, 2018, 33 (20): 4876- 4887. |
ZHAO Xia, YE Xiaobin, YANG Lun, et al. A bi-level programming model for coordinated dispatch of AGC units in regional and provincial power grids[J]. Transactions of China Electrotechnical Society, 2018, 33 (20): 4876- 4887. | |
13 | 王鹤, 丁晨, 范高锋, 等. 基于AGC调频分区控制的光储联合系统参与市场投标策略[J]. 电力系统保护与控制, 2023, 51 (2): 121- 131. |
WANG He, DING Chen, FAN Gaofeng, et al. Photovoltaic and storage system participating in the electricity market based on AGC zoning control[J]. Power System Protection and Control, 2023, 51 (2): 121- 131. | |
14 | 张荣荣. CPS标准下新能源电力系统AGC机组动态优化调度的改进模型[D]. 重庆: 重庆大学, 2016. |
ZHANG Rongrong. The improved dynamic optimization models for AGC generators dispatch in a power system with renewable energies under CPS[D]. Chongqing: Chongqing University, 2016. | |
15 | 赵霞, 叶晓斌, 杨仑, 等. CPS标准下AGC机组动态优化调度的改进方法[J]. 电力系统及其自动化学报, 2019, 31 (10): 31- 36. |
ZHAO Xia, YE Xiaobin, YANG Lun, et al. Improved method for dynamic optimal dispatch of AGC units under CPS[J]. Proceedings of the CSU-EPSA, 2019, 31 (10): 31- 36. | |
16 | 王念, 张靖, 李博文, 等. 自动发电控制研究综述[J]. 电测与仪表, 2020, 57 (21): 1- 8. |
WANG Nian, ZHANG Jing, LI Bowen, et al. Research review of automatic generation control[J]. Electrical Measurement & Instrumentation, 2020, 57 (21): 1- 8. | |
17 |
ELGERD O I, FOSHA C E. Optimum megawatt-frequency control of multiarea electric energy systems[J]. IEEE Transactions on Power Apparatus and Systems, 1970, 89 (4): 556- 563.
DOI |
18 | 李继平. 大型水电厂自动发电控制系统负荷分配策略研究[J]. 水电站机电技术, 2023, 46 (1): 117- 120. |
LI Jiping. Study on load distribution strategy of automatic generation control system of large hydropower plant[J]. Mechanical & Electrical Technique of Hydropower Station, 2023, 46 (1): 117- 120. | |
19 | 陈铭, 刘娆, 吕泉, 等. AGC机组分群控制策略[J]. 电网技术, 2013, 37 (3): 868- 873. |
CHEN Ming, LIU Rao, LÜ Quan, et al. A grouping control strategy for AGC units[J]. Power System Technology, 2013, 37 (3): 868- 873. | |
20 | 杨海晶, 饶宇飞, 李朝晖, 等. 基于随机模拟和EMD的含风光电力系统AGC调频储能定容[J]. 电力科学与技术学报, 2022, 37 (5): 58- 65. |
YANG Haijing, RAO Yufei, LI Zhaohui, et al. Energy storage capacity determination for AGC frequency modulation in the power system with wind and photovoltaic power based on the stochastic simulation and EMD[J]. Journal of Electric Power Science and Technology, 2022, 37 (5): 58- 65. | |
21 |
赵霞, 张荣荣, 赵瑞锋, 等. CPS标准下AGC机组动态优化调度的改进模型[J]. 电工技术学报, 2016, 31 (5): 99- 106.
DOI |
ZHAO Xia, ZHANG Rongrong, ZHAO Ruifeng, et al. An extended dynamic optimization model for AGC generators dispatch under CPS[J]. Transactions of China Electrotechnical Society, 2016, 31 (5): 99- 106.
DOI |
|
22 | YAN W, ZHAO R F, ZHAO X, et al. Dynamic optimization model of AGC strategy under CPS for interconnected power system[J]. International Review of Electrical Engineering, 2012, 7 (5): 5733- 5743. |
23 | 赵霞, 梁钰, 孙名轶, 等. AGC机组动态优化调度模型的凸松弛及其双层迭代算法[J]. 电力系统自动化, 2022, 46 (17): 228- 238. |
ZHAO Xia, LIANG Yu, SUN Mingyi, et al. Convex relaxation and bi-level iterative algorithm for dynamic optimal dispatch model of automatic generation control units[J]. Automation of Electric Power Systems, 2022, 46 (17): 228- 238. | |
24 | 廖小兵, 刘开培, 乐健, 等. 基于双层模型预测结构的跨区域AGC机组协同控制策略[J]. 中国电机工程学报, 2019, 39 (16): 4674- 4685. |
LIAO Xiaobing, LIU Kaipei, LE Jian, et al. Coordinated control strategy for AGC units across areas based on Bi-level model predictive control[J]. Proceedings of the CSEE, 2019, 39 (16): 4674- 4685. | |
25 | 谭鸣骢, 王玲玲, 蒋传文, 等. 考虑负荷聚合商调节潜力的需求响应双层优化模型[J]. 中国电力, 2022, 55 (10): 32- 44. |
TAN Mingcong, WANG Lingling, JIANG Chuanwen, et al. bi-level optimization model of demand response considering regulation potential of load aggregator[J]. Electric Power, 2022, 55 (10): 32- 44. | |
26 | 王钦, 陈业夫, 蔡新雷, 等. 考虑柔性负荷和阶梯型碳交易的低碳经济优化调度策略[J]. 广东电力, 2024, 37 (1): 76- 85. |
WANG Qin, CHEN Yefu, CAI Xinlei, et al. Optimization scheduling strategy for low-carbon economy considering flexible loads and tiered carbon trading[J]. Guangdong Electric Power, 2024, 37 (1): 76- 85. | |
27 | 李吉峰, 唐克, 王孜航, 等. 计及多源互补特性的新型电力系统分布式电源承载能力评估[J]. 东北电力大学学报, 2023, 43 (1): 62- 68. |
LI Jifeng, TANG Ke, WANG Zihang, et al. Assessment of distributed power generations bearing capacity of modern power systems with multi-sources complementary characteristics[J]. Journal of Northeast Electric Power University, 2023, 43 (1): 62- 68. | |
28 | 郝伟韬, 蔡国田, 卢俊曈, 等. 源网荷储互动减碳研究综述[J]. 广东电力, 2023, 36 (11): 64- 74. |
HAO Weitao, CAI Guotian, LU Juntong, et al. Review of source-grid-load-storage interactive carbon reduction research[J]. Guangdong Electric Power, 2023, 36 (11): 64- 74. | |
29 | 王皓怀, 邓韦斯, 戴仲覆, 等. 面向新能源功率多时空尺度精确预测的机制创新与平台建设探索[J]. 南方电网技术, 2023, 17 (2): 3- 10. |
WANG Haohuai, DENG Weisi, DAI Zhongfu, et al. Mechanism innovation and platform construction for accurate prediction of new energy power at multiple temporal and spatial scales[J]. Southern Power System Technology, 2023, 17 (2): 3- 10. | |
30 | 王鹤霏, 蔡国伟, 吴同, 等. 基于供用能双侧多主体博弈互动的综合能源系统优化调度策略[J]. 东北电力大学学报, 2024, 44 (1): 83- 93. |
WANG Hefei, CAI Guowei, WU Tong, et al. Optimization and scheduling strategy for comprehensive energy systems based on bilateral multi-agent game interaction between energy supply and demand[J]. Journal of Northeast Electric Power University, 2024, 44 (1): 83- 93. | |
31 | 陈宋宋, 张路涛, 周颖, 等. 面向新能源并网的分布式AGC协同算法[J]. 南方电网技术, 2023, 17 (4): 58- 68. |
CHEN Songsong, ZHANG Lutao, ZHOU Ying, et al. Distributed AGC cooperative algorithm for new energy grid connection[J]. Southern Power System Technology, 2023, 17 (4): 58- 68. |
[1] | 张磊, 马晓伟, 王满亮, 陈力, 高丙团. 互联新能源电力系统区内AGC机组分布式协同控制策略[J]. 中国电力, 2025, 58(3): 8-19. |
[2] | 王益斌, 陈飞雄, 邵振国, 张抒凌, 张伟骏, 李智诚. 基于权重系数校正的火储两阶段联合调频方法[J]. 中国电力, 2024, 57(3): 83-94. |
[3] | 赵永亮, 刁保圣, 韩翔, 刘明, 王珠, 种道彤, 严俊杰. 660 MW超临界燃煤机组变负荷过程动态特性的仿真研究[J]. 中国电力, 2019, 52(5): 13-20. |
[4] | 王琦, 曲燕, 白建云, 侯鹏飞, 李永茂, 冯赓. 基于GA的背压动态设定值多目标优化研究[J]. 中国电力, 2018, 51(9): 59-64. |
[5] | 孙文多, 卢敏, 项中明, 倪秋龙, 刘俊伟, 高强, 金啸虎. 一起因特高压直流事故引起的AGC指令异常分析及整改措施[J]. 中国电力, 2017, 50(5): 33-38. |
[6] | 谈博, 陈志刚, 顾涛, 赵志丹, 俞静, 曹琛. 机组一次调频特性在线监测方法[J]. 中国电力, 2017, 50(12): 68-74. |
[7] | 牛洪海,李兵,陈俊. 火电厂厂级负荷优化控制系统研制及应用[J]. 中国电力, 2016, 49(12): 96-100. |
[8] | 胡浩,仲悟之,宋新立,卓峻峰,陈艳波,刘涛,叶小晖,马进. 特高压联络线AGC控制策略模型[J]. 中国电力, 2015, 48(4): 83-89. |
[9] | 郑伟, 赵猛. 单元发电机组热网负荷逻辑研究与优化[J]. 中国电力, 2013, 46(8): 105-107. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||