中国电力 ›› 2018, Vol. 51 ›› Issue (12): 139-148.DOI: 10.11930/j.issn.1004-9649.201708109

• 技术经济 • 上一篇    下一篇

监管视角下的电力市场用户分类指标体系及算法研究

王鹏1, 张朋宇1, 高亚静2, 徐靖雯1, 孙华凯1   

  1. 1. 华北电力大学 电气与电子工程学院, 北京 102206;
    2. 华北电力大学 新能源电力系统国家重点实验室, 河北 保定 071003
  • 收稿日期:2017-08-28 修回日期:2018-06-14 出版日期:2018-12-05 发布日期:2018-12-13
  • 作者简介:王鹏(1973-),男,博士,教授,从事电力市场与监管,电力系统运行、分析与控制研究,E-mail:wangpeng@ncepu.edu.cn;张朋宇(1994-),男,硕士研究生,从事电力体制与电力市场研究,E-mail:zpy_ncepu@163.com
  • 基金资助:
    国家重点研发计划项目(2016YFE0102400);国家自然科学基金资助项目(51607068)。

Research on Index System and Algorithm of Customer Classification in Electricity Market from the Regulatory Perspective

WANG Peng1, ZHANG Pengyu1, GAO Yajing2, XU Jingwen1, SUN Huakai1   

  1. 1. School of Electrical and Electronic Engineering, North China Electric Power University, Beijing 102206, China;
    2. State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Baoding 071003, China
  • Received:2017-08-28 Revised:2018-06-14 Online:2018-12-05 Published:2018-12-13
  • Supported by:
    This work is supported by National Key Research and Development Program of China (No.2016YFE0102400) and National Natural Science Foundation of China (No.51607068).

摘要: 电力市场用户分类研究可作为市场准入、市场监管和售电服务等研究的基础。结合电力市场改革的新进展,创新考虑电力绿证、需求响应、用户负荷曲线等因素,构建合理的分类指标体系;采用2步主成分分析法进行数据降维,以剔除指标间重复信息、实现聚类结果可视化;针对常见聚类算法需要指定参数的缺陷,提出运用仿射传播聚类算法实现用户聚类;通过对某地区40个用户的算例分析,认为模型具备有效性和优势;最后引入优胜劣汰的监管设计,对电力市场用户准入与管理提出建议。

关键词: 电力市场, 用户分类, 负荷曲线, 主成分分析, 市场监管

Abstract: Rational classification of electricity market customers can be used as the basis for market access, market regulation and service strategy. Based on the latest development of electricity market reform, a reasonable classification index system is constructed with consideration of the factors such as renewable energy certificate, demand response and load curve. The two-step principal component analysis (PCA) is used for data dimension reduction to eliminate the repeated information between indicators as well as making the clustering result visible. To deal with the flaws of the traditional clustering algorithms that need to specify the parameters, the advanced affinity propagation (AP) clustering algorithm is used to realize customers clustering. A case study of 40 customers is conducted, which has proved the effectiveness and advantages of the proposed model. Finally, the regulatory design of survival of the fittest is introduced, and suggestions are put forward for customer admittance and management in the electricity market, which are of practical value.

Key words: electricity market, customer classification, load curve, principal component analysis, market regulation

中图分类号: