中国电力 ›› 2025, Vol. 58 ›› Issue (5): 110-120.DOI: 10.11930/j.issn.1004-9649.202405023

• 新型电网 • 上一篇    下一篇

基于关键特征对比分析的异常电价成因溯源方法

赵唯嘉1(), 白云霄1(), 张云勇1(), 朱芝润2(), 向明旭2   

  1. 1. 广东电力交易中心有限责任公司,广东 广州 510180
    2. 输变电装备技术全国重点实验室(重庆大学),重庆 400044
  • 收稿日期:2024-05-09 录用日期:2025-02-08 发布日期:2025-05-30 出版日期:2025-05-28
  • 作者简介:
    赵唯嘉(1990),男,工程师,硕士,从事电力市场研究,E-mail:zhaoweijia09@163.com
    白云霄(1988),男,硕士,高级工程师,从事电力市场建设与运营研究,E-mail:516486451@qq.com
    张云勇(1987),男,高级工程师,从事电力系统市场化研究,E-mail:121769438@qq.com
    朱芝润(1999),男,博士研究生,从事电力市场及电力系统优化调度研究,E-mail:zhuzhiruncqu@cqu.edu.cn
  • 基金资助:
    广东电力交易中心科技项目(GDKJXM20222591);国家自然科学基金青年科学基金资助项目(52307082)。

Traceability Method for the Causes of Abnormal Electricity Prices Based on Comparative Analysis of Key Features

ZHAO Weijia1(), BAI Yunxiao1(), ZHANG Yunyong1(), ZHU Zhirun2(), XIANG Mingxu2   

  1. 1. Guangdong Power Exchange Center Co., Ltd., Guangzhou 510180, China
    2. State Key Laboratory of Power Transmission Equipment Technology (Chongqing University), Chongqing 400044, China
  • Received:2024-05-09 Accepted:2025-02-08 Online:2025-05-30 Published:2025-05-28
  • Supported by:
    This work is supported by the Science and Technology Project of Guangdong Power Exchange Center Co., Ltd. (No.GDKJXM20222591), National Natural Science Foundation of China (No.52307082).

摘要:

电价信号是电力商品属性的直接体现,受市场供需、发电商报价、线路容量等多种因素影响,其呈现出种类多样的异常形式。对异常电价信号的辨识及溯源是各级电力交易中心的重要日常工作。然而,当前普遍依赖于人工经验对异常电价成因进行分析,不仅效率低下,而且难以保证客观、科学溯源异常电价成因。为解决上述问题,提出了一种基于关键特征对比分析的异常电价成因溯源方法。首先,基于历史电价数据特征,完成电价尖峰幅值异常和电价均值异常的分类;然后,通过主成分分析法建立各类型异常电价信号关键特征集合;最后,基于替代算法逐一计算关键特征集合内部各元素对电价的影响程度,并通过影响程度重要性排序实现异常电价成因筛选与溯源。所提方法的有效性在大量基于电力市场实际数据构建的算例中得到了验证,所提方法针对电价均值异常和尖峰异常的成因溯源的平均正确率达到85%以上,可有效降低异常电价成因溯源过程的人力成本。

关键词: 异常电价, 成因溯源, 主成分分析, 关键特征

Abstract:

The electricity price directly reflects the attributes of electricity commodities. However, influenced by various factors such as market supply and demand, power generation company bids, and line transmission capacity, the electricity price signals often exhibit diverse forms of anomalies. Recognizing and tracing these abnormal electricity price signals are crucial daily tasks for power trading centers at all levels. However, the existing tracing methods generally rely on manual experiences to analyze the causes of abnormal electricity prices, which is inefficient and difficult to ensure objective and scientific traceability of the causes of abnormal electricity prices. This paper proposes an abnormal electricity price cause tracing method based on comparative analysis of key features. Firstly, based on the historical electricity price data features, the abnormal spike amplitude and abnormal average value of electricity prices are categorized. And then, using the principal component analysis method, the collections of key features for each type of abnormal electricity price signals are established. Finally, using the alternative algorithms, the influencing degree of each element within the collection of key features on the electricity price are calculated respectively, and ranked based on their importance, thereby achieving filtering and tracing of the causes for abnormal electricity prices. The effectiveness of the proposed methodin is verified through case studies based on numerous actual power market data. The average accuracy rate of the proposed method for tracing the causes of average electricity price anomalies and spike anomalies reaches more than 85%, which can effectively reduce the labor costs in the process of tracing the causes of abnormal electricity prices.

Key words: abnormal electricity price, traceability method, principal component analysis (PCA), key features