中国电力 ›› 2025, Vol. 58 ›› Issue (5): 102-109.DOI: 10.11930/j.issn.1004-9649.202402054

• 新能源与储能 • 上一篇    下一篇

基于改进回声状态网络的质子交换膜燃料电池剩余寿命预测

袁铁江1(), 李荣盛1(), 康建东2, 闫华光2   

  1. 1. 大连理工大学 电气工程学院,辽宁 大连 116081
    2. 中国电力科学研究院有限公司,北京 100192
  • 收稿日期:2024-02-10 发布日期:2025-05-30 出版日期:2025-05-28
  • 作者简介:
    袁铁江(1975),男,博士,教授,从事大规模储能与新能源发电并网技术研究,E-mail:ytj1975@dlut.edu.cn
    李荣盛(1997),男,通信作者,硕士研究生,从事氢燃料电池故障预测及控制研究,E-mail:2360869775@qq.com
  • 基金资助:
    国家电网有限公司科技项目(兆瓦级电氢融合能源枢纽灵活高效运行及主动支撑关键技术研究与示范,5108-202218280A-2-386-XG)。

Residual Life Prediction of Proton Exchange Membrane Fuel Cell Based on Improved ESN

YUAN Tiejiang1(), LI Rongsheng1(), KANG Jiandong2, YAN Huaguang2   

  1. 1. School of Electrical Engineering, Dalian University of Technology, Dalian 116081, China
    2. China Electric Power Research Institute, Beijing 100192, China
  • Received:2024-02-10 Online:2025-05-30 Published:2025-05-28
  • Supported by:
    This work is supported by Science and Technology Project of SGCC (Research and Demonstration of Key Technologies for Flexible and Efficient Operation and Active Support of Megawatt-Level Electric-Hydrogen Integrated Energy Hub, No.5108-202218280A-2-386-XG).

摘要:

针对质子交换膜燃料电池(PEMFC)的剩余有效寿命预测技术(RUL)在中长期预测效果不佳的问题,提出了一种基于改进灰狼优化算法(IGWO)和回声状态网络(ESN)的剩余寿命预测方法。首先选取电堆电压作为健康指标,使用卷积平滑滤波法对PEMFC数据集进行数据平滑和归一化处理,有效减少异常值对后续模型训练的干扰。然后利用IGWO的局部和全局寻优能力对ESN的储备池参数进行优化,构建出IGWO-ESN网络模型,并利用处理后数据集进行PEMFC剩余寿命预测模型的训练,最后与传统的ESN进行对比验证。结果表明,改进后的ESN模型预测均方根误差和平均绝对百分比误差分别为0.03420.9315%,预测精度相较于普通ESN模型明显提升,中长期RUL的预测准确度也更高。

关键词: 质子交换膜燃料电池, 回声状态网络, 灰狼优化算法, 剩余寿命预测

Abstract:

Aiming at the problem that the current residual effective life prediction (RUL) technique for proton exchange membrane fuel cells (PEMFCs) has poor prediction effect in the medium and long term, a residual life prediction method based on the Improved Gray Wolf Optimization algorithm (IGWO) and Echo State Network (ESN) is proposed, in which the voltage of the electric stack is firstly selected as a health indicator, and the PEMFC dataset is processed by using convolutional smoothing filtering method to carry out data Smoothing and normalization are used to effectively reduce the interference of outliers on the subsequent model training. Then the reserve pool parameters of the ESN are optimized using the local and global optimization search capability of IGWO, and the IGWO-ESN network model is constructed, and the processed dataset is used for the training of the remaining life prediction model of the PEMFC, and finally it is compared with the traditional ESN for verification. The results show that the improved ESN model predicts the root mean square error and average absolute percentage error of 0.0342 and 0.9315%, respectively, and the prediction accuracy is significantly improved compared with the ordinary ESN model, and the prediction accuracy of the medium- and long-term RUL is also higher.

Key words: proton exchange membrane fuel cell, echo state network, gray wolf optimization algorithm, remaining life prediction