中国电力 ›› 2025, Vol. 58 ›› Issue (5): 121-136.DOI: 10.11930/j.issn.1004-9649.202407094
叶希1(), 黄格超2, 王曦2, 王彦沣1, 朱童1, 何川3, 张瑜祺3(
)
收稿日期:
2024-07-22
发布日期:
2025-05-30
出版日期:
2025-05-28
作者简介:
基金资助:
YE Xi1(), HUANG Gechao2, WANG Xi2, WANG Yanfeng1, ZHU Tong1, HE Chuan3, ZHANG Yuqi3(
)
Received:
2024-07-22
Online:
2025-05-30
Published:
2025-05-28
Supported by:
摘要:
为解决双碳背景下的新能源消纳问题,以及直流输电接入下的多源协同优化调度问题,提出基于信息间隙决策理论的受端电网电压稳定多源协同优化调度策略。首先,构建电压稳定指标,反映电力系统当前状态与电压稳定极限状态之间的距离。然后,以最小化系统运行成本和弃风惩罚为目标,提出考虑火电、梯级水电、风电、储能、直流输入的多源协同优化调度模型,对系统内各种可控电源建立模型,并通过泰勒级数展开、三角形近似等方法线性化交流潮流和水电转换约束。在此基础上,通过电压稳定裕度阈值生成电压稳定约束,通过每次迭代在受端电网多源协同优化问题中添加电压稳定约束,实现电压稳定裕度指标的改善。考虑风电出力和系统负荷需求的不确定性,提出基于信息间隙决策理论的受端电网电压稳定多源协同优化调度模型。最后,通过算例验证了所提出模型的有效性。
叶希, 黄格超, 王曦, 王彦沣, 朱童, 何川, 张瑜祺. 基于信息间隙决策理论的受端电网电压稳定多源协同优化调度[J]. 中国电力, 2025, 58(5): 121-136.
YE Xi, HUANG Gechao, WANG Xi, WANG Yanfeng, ZHU Tong, HE Chuan, ZHANG Yuqi. Multi-source Coordinated Scheduling of Receiving Power System Considering Voltage Stability Based on Information Gap Decision Theory[J]. Electric Power, 2025, 58(5): 121-136.
机组 | 水电转换系数 | 初始水头 | 最大出力/MW | |||
H1 | 6.197 | 220 | ||||
H2 | 7.182 | 190 |
表 2 梯级水电机组参数
Table 2 Parameter of cascade hydro power unis
机组 | 水电转换系数 | 初始水头 | 最大出力/MW | |||
H1 | 6.197 | 220 | ||||
H2 | 7.182 | 190 |
充放电功率上限/MW | 容量上限/MW | 充放电效率 | ||
30 | 150 | 0.9 |
表 3 储能设备参数
Table 3 Parameter of energy storage equipment
充放电功率上限/MW | 容量上限/MW | 充放电效率 | ||
30 | 150 | 0.9 |
机组 | 最小 有功 出力/ MW | 最大 有功 出力/ MW | 最小无 功出力/ (MW·A) | 最大无 功出力/ (MW·A) | 爬坡率/ (MW·h–1) | 最小 开机 时间/ h | 最小 关机 时间/ h | |||||||
G1 | 25 | 100 | 0 | 300 | 50 | 8 | 4 | |||||||
G2 | 25 | 200 | 0 | 100 | 150 | 5 | 4 |
表 1 火电机组参数
Table 1 Parameter of thermal unis
机组 | 最小 有功 出力/ MW | 最大 有功 出力/ MW | 最小无 功出力/ (MW·A) | 最大无 功出力/ (MW·A) | 爬坡率/ (MW·h–1) | 最小 开机 时间/ h | 最小 关机 时间/ h | |||||||
G1 | 25 | 100 | 0 | 300 | 50 | 8 | 4 | |||||||
G2 | 25 | 200 | 0 | 100 | 150 | 5 | 4 |
传输线 路编号 | 首端 节点 | 末端 节点 | 电阻 | 电抗 | 有功潮 流限制/ MW | 无功潮 流限制/ (MV·A) | ||||||
1 | 1 | 2 | 0.010 | 400 | 400 | |||||||
2 | 1 | 4 | 0.004 | 500 | 500 | |||||||
3 | 2 | 3 | 0.025 | 500 | 500 | |||||||
4 | 2 | 4 | 0.027 | 500 | 500 | |||||||
5 | 3 | 6 | 0.010 | 500 | 500 | |||||||
6 | 4 | 5 | 0.010 | 500 | 500 | |||||||
7 | 5 | 6 | 0.040 | 500 | 500 |
表 4 传输线路参数
Table 4 Parameter of transmission lines
传输线 路编号 | 首端 节点 | 末端 节点 | 电阻 | 电抗 | 有功潮 流限制/ MW | 无功潮 流限制/ (MV·A) | ||||||
1 | 1 | 2 | 0.010 | 400 | 400 | |||||||
2 | 1 | 4 | 0.004 | 500 | 500 | |||||||
3 | 2 | 3 | 0.025 | 500 | 500 | |||||||
4 | 2 | 4 | 0.027 | 500 | 500 | |||||||
5 | 3 | 6 | 0.010 | 500 | 500 | |||||||
6 | 4 | 5 | 0.010 | 500 | 500 | |||||||
7 | 5 | 6 | 0.040 | 500 | 500 |
方案 | 储能设备 | 直流功率调节 | 电压稳定 | IGDT | ||||
1 | × | × | × | × | ||||
2 | √ | × | × | × | ||||
3 | √ | √ | × | × | ||||
4 | √ | √ | √ | × | ||||
5 | √ | √ | √ | √ |
表 5 方案设置
Table 5 Settings of cases
方案 | 储能设备 | 直流功率调节 | 电压稳定 | IGDT | ||||
1 | × | × | × | × | ||||
2 | √ | × | × | × | ||||
3 | √ | √ | × | × | ||||
4 | √ | √ | √ | × | ||||
5 | √ | √ | √ | √ |
方案 | 系统成本/元 | 运行成本/元 | 弃风惩罚/元 | 计算时间/s | ||||
1 | 5.4 | |||||||
2 | 5.7 | |||||||
3 | 6.5 | |||||||
4 | 389.2 | 17.0 | ||||||
5 | 0 | 61.9 |
表 6 方案1-5成本与计算时间对比
Table 6 Comparison cost and computational time of case 1-5
方案 | 系统成本/元 | 运行成本/元 | 弃风惩罚/元 | 计算时间/s | ||||
1 | 5.4 | |||||||
2 | 5.7 | |||||||
3 | 6.5 | |||||||
4 | 389.2 | 17.0 | ||||||
5 | 0 | 61.9 |
方案 | 偏差系数 | 不确定度β | 系统总成本/元 | |||
5.1 | 0.05 | |||||
5.2 | 0.10 | |||||
5 | 0.20 |
表 7 方案5,5.1,5.2计算结果对比
Table 7 Comparison computational results of case 5, 5.1, 5.2
方案 | 偏差系数 | 不确定度β | 系统总成本/元 | |||
5.1 | 0.05 | |||||
5.2 | 0.10 | |||||
5 | 0.20 |
方案 | 系统成本/万元 | 运行成本/万元 | 弃风惩罚/万元 | 计算时间/s | ||||
1 | 273.58 | 161.79 | 111.79 | 162.04 | ||||
2 | 259.27 | 159.39 | 99.88 | 168.32 | ||||
3 | 205.11 | 149.03 | 56.08 | 865.97 | ||||
4 | 224.75 | 176.76 | 47.99 | |||||
5 | 246.13 | 246.13 | 0.00 |
表 8 方案1~5成本与计算时间对比
Table 8 Comparison cost and computational time of case 1~5
方案 | 系统成本/万元 | 运行成本/万元 | 弃风惩罚/万元 | 计算时间/s | ||||
1 | 273.58 | 161.79 | 111.79 | 162.04 | ||||
2 | 259.27 | 159.39 | 99.88 | 168.32 | ||||
3 | 205.11 | 149.03 | 56.08 | 865.97 | ||||
4 | 224.75 | 176.76 | 47.99 | |||||
5 | 246.13 | 246.13 | 0.00 |
不确定性方法 | 系统成本/万元 | 运行成本/万元 | 弃风惩罚/万元 | |||
IGDT | 246.13 | 246.13 | 0.00 | |||
RO | 358.80 | 358.80 | 0.00 | |||
SO | 221.29 | 174.72 | 46.57 |
表 9 IGDT、RO、SO方法的成本对比
Table 9 Comparison cost of IGDT, RO and SO
不确定性方法 | 系统成本/万元 | 运行成本/万元 | 弃风惩罚/万元 | |||
IGDT | 246.13 | 246.13 | 0.00 | |||
RO | 358.80 | 358.80 | 0.00 | |||
SO | 221.29 | 174.72 | 46.57 |
1 | 程春田. 碳中和下的水电角色重塑及其关键问题[J]. 电力系统自动化, 2021, 45 (16): 29- 36. |
CHENG Chuntian. Function remolding of hydropower systems for carbon neutral and its key problems[J]. Automation of Electric Power Systems, 2021, 45 (16): 29- 36. | |
2 | 谭晶, 何川, 陈保瑞, 等. 考虑水光蓄互补和直流外送的电力系统分布鲁棒优化调度方法[J]. 中国电机工程学报, 2024, 44 (15): 5947- 5959. |
TAN Jing, HE Chuan, CHEN Baorui, et al. Distributionally robust optimal scheduling method of power system considering hydropower-photovoltaic-pumped storage complementarity and DC transmission[J]. Proceedings of the CSEE, 2024, 44 (15): 5947- 5959. | |
3 | 鲁宗相, 林弋莎, 乔颖, 等. 极高比例可再生能源电力系统的灵活性供需平衡[J]. 电力系统自动化, 2022, 46 (16): 3- 16. |
LU Zongxiang, LIN Yisha, QIAO Ying, et al. Flexibility supply-demand balance in power system with ultra-high proportion of renewable energy[J]. Automation of Electric Power Systems, 2022, 46 (16): 3- 16. | |
4 | 苏南. 四川构建“受送一体化”新型电力系统[N]. 中国能源报, 2022-05-23(019). |
5 |
ZHAO M Z, WANG Y M, WANG X B, et al. Flexibility evaluation of wind-PV-hydro multi-energy complementary base considering the compensation ability of cascade hydropower stations[J]. Applied Energy, 2022, 315, 119024.
DOI |
6 | 张玮, 李丹, 张翔宇, 等. 基于风险约束的风电和水电联合日前调度优化模型[J]. 中国电力, 2016, 49 (5): 163- 170. |
ZHANG Wei, LI Dan, ZHANG Xiangyu, et al. Risk-constrained day-ahead scheduling optimization model of hydro-wind power generation[J]. Electric Power, 2016, 49 (5): 163- 170. | |
7 | 郑伟民, 但扬清, 王晨轩, 等. 计及风-光-水-火多能协同的电网可再生能源消纳能力评估[J]. 中国电力, 2023, 56 (12): 248- 254. |
ZHENG Weimin, DAN Yangqing, WANG Chenxuan, et al. Evaluation of renewable energy consumption capacity in power grid considering the synergistic effect of wind-photovoltaic-hydro-thermal power[J]. Electric Power, 2023, 56 (12): 248- 254. | |
8 | 李咸善, 丁胜彪, 李飞, 等. 考虑水电调节费用补偿的风光水联盟优化调度策略[J]. 中国电力, 2024, 57 (5): 26- 38. |
LI Xianshan, DING Shengbiao, LI Fei, et al. Optimal scheduling strategy for wind-solar-hydro alliance considering compensation of regulation by hydropower[J]. Electric Power, 2024, 57 (5): 26- 38. | |
9 | 刘联涛, 刘飞, 吉平, 等. 储能参与新能源消纳的优化控制策略[J]. 中国电力, 2023, 56 (3): 137- 143. |
LIU Liantao, LIU Fei, JI Ping, et al. Research on optimal control strategy of energy storage for improving new energy consumption[J]. Electric Power, 2023, 56 (3): 137- 143. | |
10 | 尚博阳, 许寅, 王颖, 等. 参与辅助服务的用户侧储能优化配置及经济分析[J]. 中国电力, 2023, 56 (2): 164- 170, 178. |
SHANG Boyang, XU Yin, WANG Ying, et al. Optimal configuration and economic analysis of user-side energy storage participation in auxiliary services[J]. Electric Power, 2023, 56 (2): 164- 170, 178. | |
11 |
LIU Z F, ZHANG Z, ZHUO R Q, et al. Optimal operation of independent regional power grid with multiple wind-solar-hydro-battery power[J]. Applied Energy, 2019, 235, 1541- 1550.
DOI |
12 |
ZHOU S Y, HAN Y, ZALHAF A S, et al. A novel multi-objective scheduling model for grid-connected hydro-wind-PV-battery complementary system under extreme weather: a case study of Sichuan, China[J]. Renewable Energy, 2023, 212, 818- 833.
DOI |
13 | 李东东, 孙梦显, 赵耀, 等. 基于等效运行短路比的多直流馈入系统静态电压稳定分析[J]. 中国电机工程学报, 2020, 40 (12): 3847- 3857. |
LI Dongdong, SUN Mengxian, ZHAO Yao, et al. The steady-state voltage stability analysis of multi-infeed LCC-HVDC system based on equivalent operating short circuit ratio[J]. Proceedings of the CSEE, 2020, 40 (12): 3847- 3857. | |
14 | LI J R, LIN J, SONG Y H, et al. Coordinated planning of HVDCs and power-to-hydrogen supply chains for interregional renewable energy utilization[J]. IEEE Transactions on Sustainable Energy, 2022, 13 (4): 1913- 1929. |
15 | 李晖, 刘栋, 秦继朔, 等. 考虑风光出力不确定性的新能源基地直流外送随机规划方法研究[J]. 电网技术, 2024, 48 (7): 2795- 2803. |
LI Hui, LIU Dong, QIN Jishuo, et al. Stochastic planning method for UHVDC transmission of renewable energy power base considering wind and photovoltaic output uncertainties[J]. Power System Technology, 2024, 48 (7): 2795- 2803. | |
16 |
王智冬. 特高压直流风电火电联合外送电源规模优化方法[J]. 电力建设, 2015, 36 (10): 60- 66.
DOI |
WANG Zhidong. Optimization method of UHVDC combined wind-thermal power transmission scale[J]. Electric Power Construction, 2015, 36 (10): 60- 66.
DOI |
|
17 | 李湃, 王伟胜, 黄越辉, 等. 大规模新能源基地经特高压直流送出系统中长期运行方式优化方法[J]. 电网技术, 2023, 47 (1): 31- 40. |
LI Pai, WANG Weisheng, HUANG Yuehui, et al. Method on optimization of medium and long term operation modes of large-scale renewable energy power base through UHVDC system[J]. Power System Technology, 2023, 47 (1): 31- 40. | |
18 |
戴国华, 戴睿, 程广岩, 等. 提升新能源渗透率的风-光-火联合直流外送方法[J]. 广东电力, 2022, 35 (5): 8- 15.
DOI |
DAI Guohua, DAI Rui, CHENG Guangyan, et al. Joint delivery of wind-photovoltaic-thermal power by UHVDC for increasing new energy penetration[J]. Guangdong Electric Power, 2022, 35 (5): 8- 15.
DOI |
|
19 | 冉慧娟, 王治钟, 高本锋, 等. 适用于高压直流输电受端系统的两阶段暂态电压评估方法[J]. 电网技术, 2023, 47 (10): 4272- 4283. |
RAN Huijuan, WANG Zhizhong, GAO Benfeng, et al. Two-stage transient voltage evaluation suitable for HVDC receiving systems[J]. Power System Technology, 2023, 47 (10): 4272- 4283. | |
20 | 沈舒仪, 王国腾, 但扬清, 等. 频率偏差与电压刚度约束下多馈入直流优化调度方法[J]. 中国电力, 2025, 58 (3): 132- 141. |
SHEN Shuyi, WANG Guoteng, DAN Yangqing, et al. Optimal scheduling method for multi-infeed receiving-end power grids under frequency deviation and voltage stiffness constraints[J]. Electric Power, 2025, 58 (3): 132- 141. | |
21 | 夏成军, 王真, 华夏, 等. 基于电压灵敏度的受端系统电压支撑强度评价指标[J]. 电网技术, 2018, 42 (9): 2938- 2947. |
XIA Chengjun, WANG Zhen, HUA Xia, et al. A voltage support strength index based on sensitivity for receiving end of HVDC system[J]. Power System Technology, 2018, 42 (9): 2938- 2947. | |
22 | 徐成司, 王子翰, 董树锋, 等. 基于潮流雅可比行列式的静态电压稳定分析[J]. 中国电机工程学报, 2022, 42 (6): 2096- 2108. |
XU Chengsi, WANG Zihan, DONG Shufeng, et al. Static voltage stability analysis based on power flow Jacobian determinant[J]. Proceedings of the CSEE, 2022, 42 (6): 2096- 2108. | |
23 | 徐琳, 卢继平, 汪洋, 等. 电力系统节点电压稳定指标的研究[J]. 电网技术, 2010, 34 (3): 26- 30. |
XU Lin, LU Jiping, WANG Yang, et al. Research on nodal voltage stability index of power system[J]. Power System Technology, 2010, 34 (3): 26- 30. | |
24 |
张谦, 廖清芬, 唐飞, 等. 计及分布式电源接入的配电网静态电压稳定性评估方法[J]. 电力系统自动化, 2015, 39 (15): 42- 48.
DOI |
ZHANG Qian, LIAO Qingfen, TANG Fei, et al. Steady state voltage stability assessment method of distribution network considering inter-connection of distributed generators[J]. Automation of Electric Power Systems, 2015, 39 (15): 42- 48.
DOI |
|
25 | 李江南, 程韧俐, 周保荣, 等. 含碳捕集及电转氢设备的低碳园区综合能源系统随机优化调度[J]. 中国电力, 2024, 57 (5): 149- 156. |
LI Jiangnan, CHENG Renli, ZHOU Baorong, et al. Stochastic optimal of integrated energy system in low-carbon parks considering carbon capture storage and power to hydrogen[J]. Electric Power, 2024, 57 (5): 149- 156. | |
26 | 翟晶晶, 吴晓蓓, 傅质馨, 等. 考虑需求响应与光伏不确定性的综合能源系统鲁棒优化[J]. 中国电力, 2020, 53 (8): 9- 18. |
ZHAI Jingjing, WU Xiaobei, FU Zhixin, et al. Robust optimization of integrated energy systems considering demand response and photovoltaic uncertainty[J]. Electric Power, 2020, 53 (8): 9- 18. | |
27 | 李东东, 尤杨, 周波. 基于信息间隙决策理论的售电公司参与多市场的优化决策[J]. 电网技术, 2022, 46 (12): 4778- 4788. |
LI Dongdong, YOU Yang, ZHOU Bo. IGDT-based decision-making optimization of electricity retailers under multi-market[J]. Power System Technology, 2022, 46 (12): 4778- 4788. | |
28 | 张涛, 刘伉, 陶然, 等. 计及热媒流率和热损耗不确定性的综合能源系统优化调度[J]. 中国电力, 2023, 56 (4): 146- 155. |
ZHANG Tao, LIU Kang, TAO Ran, et al. Optimal scheduling of integrated energy system considering uncertainty of heat medium flow rate and heating network loss[J]. Electric Power, 2023, 56 (4): 146- 155. | |
29 | 汪超群, 韦化, 吴思缘. 基于信息间隙决策理论的多源联合优化机组组合[J]. 中国电机工程学报, 2018, 38 (12): 3431- 3440. |
WANG Chaoqun, WEI Hua, WU Siyuan. Multi-power combined unit commitment based on information gap decision theory[J]. Proceedings of the CSEE, 2018, 38 (12): 3431- 3440. | |
30 | 王晓村, 李腾飞, 徐妍珺, 等. 基于信息间隙决策理论的电-气综合能源系统低碳经济调度[J/OL]. 电测与仪表, 1–10[2025-01-15]. http://kns.cnki.net/kcms/detail/23.1202.TH.20230525.1046.002.html. |
WANG Xiaocun, LI Tengfei, XU Yanjun, et al. Low-carbon economic dispatching of integrated electricity-gas system based on IGDT[J/OL]. Electrical Measurement & Instrumentation, 1–10[2024-04-24]. http://kns.cnki.net/kcms/detail/23.1202.TH.20230525.1046.002.html. | |
31 |
MIRZAEI M A, NAZARI-HERIS M, MOHAMMADI-IVATLOO B, et al. Network-constrained joint energy and flexible ramping reserve market clearing of power-and heat-based energy systems: a two-stage hybrid IGDT–stochastic framework[J]. IEEE Systems Journal, 2021, 15 (2): 1547- 1556.
DOI |
32 |
REZAEI N, AHMADI A, KHAZALI A, et al. Multiobjective risk-constrained optimal bidding strategy of smart microgrids: an IGDT-based normal boundary intersection approach[J]. IEEE Transactions on Industrial Informatics, 2019, 15 (3): 1532- 1543.
DOI |
33 |
DOLATABADI A, JADIDBONAB M, MOHAMMADI-IVATLOO B. Short-term scheduling strategy for wind-based energy hub: a hybrid stochastic/IGDT approach[J]. IEEE Transactions on Sustainable Energy, 2019, 10 (1): 438- 448.
DOI |
34 |
KESSEL P, GLAVITSCH H. Estimating the voltage stability of a power system[J]. IEEE Transactions on Power Delivery, 1986, 1 (3): 346- 354.
DOI |
35 | RIDER M J, GARCIA A V, ROMERO R. Power system transmission network expansion planning using AC model[J]. IET Generation, Transmission & Distribution, 2007, 1(5): 731-742. |
36 | 陈晞, 段溪洛, 张振东. 浅议雅砻江流域梯级水电站开发物资供应结构和管理[J]. 四川水力发电, 2009, 28 (4): 147- 150. |
CHEN Xi, DUAN Xiluo, ZHANG Zhendong. Materials supply structure and management for cascade hydropower station development in yalong river basin[J]. Sichuan Hydropower, 2009, 28 (4): 147- 150. | |
37 |
YIN Y, HE C, LIU T Q, et al. Risk-averse stochastic midterm scheduling of thermal-hydro-wind system: a network-constrained clustered unit commitment approach[J]. IEEE Transactions on Sustainable Energy, 2022, 13 (3): 1293- 1304.
DOI |
38 | 史华勃, 范成围, 李茜, 等. 考虑频率及电压稳定约束的主动解列最优断面搜索方法[J]. 电网技术, 2023, 47 (8): 3324- 3335. |
SHI Huabo, FAN Chengwei, LI Qian, et al. Optimal controlled islanding method considering frequency and voltage stability constraints[J]. Power System Technology, 2023, 47 (8): 3324- 3335. | |
39 | 张宁, 朱昊, 杨凌霄, 等. 考虑可再生能源消纳的多能互补虚拟电厂优化调度策略[J]. 发电技术, 2023, 44 (5): 625- 633. |
ZHANG Ning, ZHU Hao, YANG Lingxiao, et al. Optimal scheduling strategy of multi-energy complementary virtual power plant considering renewable energy consumption[J]. Power Generation Technology, 2023, 44 (5): 625- 633. | |
40 | 郁海彬, 张煜晨, 刘扬洋, 等. 碳交易机制下多主体虚拟电厂参与电力市场的优化调度竞标策略[J]. 发电技术, 2023, 44 (5): 634- 644. |
YU Haibin, ZHANG Yuchen, LIU Yangyang, et al. Optimal dispatching bidding strategy of multi-agent virtual power plant participating in electricity market under carbon trading mechanism[J]. Power Generation Technology, 2023, 44 (5): 634- 644. | |
41 | 董光德, 李道明, 陈咏涛, 等. 基于粒子群优化与卷积神经网络的电能质量扰动分类方法[J]. 发电技术, 2023, 44 (1): 136- 142. |
DONG Guangde, LI Daoming, CHEN Yongtao, et al. Power quality disturbance classification method based on particle swarm optimization and convolutional neural network[J]. Power Generation Technology, 2023, 44 (1): 136- 142. |
[1] | 胡常胜, 摆志俊, 张章, 李建康, 沈子洋. 计及静态电压稳定裕度的电制氢容量和布点规划研究[J]. 中国电力, 2025, 58(5): 91-101. |
[2] | 张睿骁, 梁利, 王定美. 新能源场站快速频率响应分析与高效测试装置设计[J]. 中国电力, 2025, 58(5): 144-151. |
[3] | 张磊, 马晓伟, 王满亮, 陈力, 高丙团. 互联新能源电力系统区内AGC机组分布式协同控制策略[J]. 中国电力, 2025, 58(3): 8-19. |
[4] | 汪林光, 李旭涛, 任勇, 谢小荣. 基于元启发式算法的新能源电力系统振荡稳定性最差工况搜索方法[J]. 中国电力, 2025, 58(3): 65-72. |
[5] | 沈舒仪, 王国腾, 但扬清, 孙飞飞, 黄莹, 徐政. 频率偏差与电压刚度约束下多馈入直流优化调度方法[J]. 中国电力, 2025, 58(3): 132-141. |
[6] | 邹小燕, 张瑞宏. 考虑政府干预的可再生能源与储能企业合作模式演化博弈研究[J]. 中国电力, 2025, 58(1): 153-163. |
[7] | 王雨晴, 张敏, 王嘉兴, 李泊皓, 杨天阳, 曾鸣. 基于超模博弈的共享储能容量租赁价格决策[J]. 中国电力, 2025, 58(1): 164-173. |
[8] | 孙东磊, 王宪, 孙毅, 孟祥飞, 张涌琛, 张玉敏. 基于多面体不确定集合的电力系统灵活性量化评估方法[J]. 中国电力, 2024, 57(9): 146-155. |
[9] | 孙东磊, 孙毅, 刘蕊, 孙鹏凯, 张玉敏. 计及多层级配电网的分布式新能源最大消纳空间分解测算[J]. 中国电力, 2024, 57(8): 108-116. |
[10] | 李鲁阳, 陈龙翔, 陈磊, 孙大卫, 吴林林, 闵勇. 用于新能源一次调频的储能经济配置研究[J]. 中国电力, 2024, 57(7): 54-65. |
[11] | 李佳蔚, 张冠宇. 大规模分布式新能源接入对省级电网稳定性影响[J]. 中国电力, 2024, 57(6): 174-180. |
[12] | 高政南, 姜楠, 陈启鑫, 徐江, 王海利, 辛力, 徐青贵. 德国电力市场能源转型建设及启示[J]. 中国电力, 2024, 57(6): 204-214. |
[13] | 李咸善, 丁胜彪, 李飞, 李欣. 考虑水电调节费用补偿的风光水联盟优化调度策略[J]. 中国电力, 2024, 57(5): 26-38. |
[14] | 朱子民, 张锦芳, 常清, 周专, 张晓林. 大规模新能源接入弱同步支撑柔直系统的送端自适应VSG控制策略[J]. 中国电力, 2024, 57(5): 211-221. |
[15] | 王帅, 黄越辉, 聂元弘, 刘思扬. 基于生产模拟的受端电网新能源发展场景研究[J]. 中国电力, 2024, 57(5): 240-250. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||