[1] 段传和,夏怀祥. 燃煤电站SCR烟气脱硝工程技术[M]. 北京: 中国电力出版社,2009. [2] ZHENG Y, JENSEN A D, JOHNSSON J E. Laboratory investigation of selective catalytic reduction catalysts: Deactivation by potassium compounds and catalyst generation[J]. Industrial & Engineering Chemistry Research, 2004, 43(4): 941-947. [3] CHEN J P, YANG R T, Mechanism of poisoning of the V2O5/TiO2 catalyst for the reduction of NO by NH3[J]. Journal of Catalysis, 1990, 125(2): 411-420. [4] INOMATA M, MIYANOTO A, MURAKAMI Y. Mechanism of the reaction of NO and NH3 on vanadium oxide catalyst in the presence of oxygen under the dilute gas condition[J]. Journal of Catalysis, 1980, 62(1): 140-148. [5] 于敦喜,徐明厚,易帆,等. 燃煤过程中颗粒物的形成机理研究进展[J]. 煤炭转化,2004,27(4):7-12. YU Dunxi, XU Minghou, YI Fan, et al. A review on particle formation mechanisms during coal combustion[J]. Coal Conversion, 2004, 27(4): 7-12. [6] 陈进生,商雪松,赵金平,等. 烟气脱硝催化剂的性能检测与评价[J]. 中国电力,2010,43(11):64-69. CHEN Jinsheng, SHANG Xuesong, ZHAO Jinping, et al. Performance determination and evaluation of denitration catalyst in flue gas [J]. Electric Power, 2010, 43(11): 64-69. [7] 隋建才,徐明厚,丘纪华,等. 燃煤可吸入颗粒物的物理化学特性及形成机理[J]. 化工学报,2006,57(7):1664-1670. SUI Jiancai, XU Minghou, QIU Jihua, et al. Physiochemical characteristics and formation mechanism of inhalable particulate matter in coal combustion process[J]. Journal of Chemical Industry and Engineering (China), 2006, 57(7): 1664-1670. [8] 岳勇,陈雷,姚强,等. 燃煤锅炉颗粒物粒径分布和痕量元素富集特性实验研究[J]. 中国电机工程学报,2005,25(18):74-79. YUE Yong, CHEN Lei, YAO Qiang, et al. Experimental study on characteristics of particulate matter size distribution and trace elements enrichment in emissions from a pulverized coal-fired boiler [J]. Proceedings of the CSEE, 2005, 25(18): 74-79. [9] 郦建国,刘云. 中国煤种成分及其对电除尘器性能影响分析和电除尘器适应性评价[C]//第十三届中国电除尘学术会议论文集. 2009:100-108. [10] BENSON S A, LAUMB J D, CROCKER C R, et al. SCR catalyst performance in flue gases derived from subbituminous and lignite coals [J]. Fuel Processing Technology, 2005, 86(5): 577-613. [11] NICOSIA D, CZEKAJ I, KRCHER O. Chemical deactivation of V2O5/WO3-TiO2 SCR catalysts by additives and impurities from fuels, Lubrication oils and urea solution, part Ⅱ. characterization study of the effect of alkali and alkaline earth metals [J]. Applied Catalysis B: Environmental, 2008, 77(3-4). [12] 商雪松,陈进生,赵金平,等. SCR脱硝催化剂失活及其原因研究[J]. 燃料化学学报,2011,39(6):465-470. SHANG Xuesong, CHEN Jinsheng, ZHAO Jinping, et al. Discussion on the deactivation of SCR denitrification catalyst and its reasons[J]. Journal of Fuel Chemistry and Technology, 2011, 39(6): 465-470. [13] 张强,许世森,王志强. 选择性催化还原烟气脱硝技术进展及工程应用[J]. 热力发电,2004,33(4):1-6. ZHANG Qiang, XU Shishen, WANG Zhiqiang. Advancement and engineering application of flue gas denitrification technology by using selective catalytic reduction method[J]. Thermal Power Generation, 2004, 33(4): 1-6. [14] 李峰,於承志,张朋,等. 高尘烟气脱硝催化剂耐磨性能研究[J]. 热力发电,2010,39(12):73-75. LI Feng, YU Chengzhi, ZHANG Peng, et al. Study on abrasiveness of catalyst used for denitrification in flue gas with high dust content[J]. Thermal Power Generation, 2010, 39(12): 73-75. [15] 王乐乐,周健,姚友工,等. 烟气脱硝SCR氨喷射系统调整效果评估[J]. 中国电力,2015,48(4):16-22. WANG Lele, ZHOU Jian, YAO Yougong, et al. Evaluation on effects of SCR ammonia injection system modification for flue gas denitrification [J]. Electric Power, 2015, 48(4): 16-22. [16] 王静,沈伯雄,刘亭,等. 钒钛基SCR催化剂中毒及再生研究进展[J]. 环境科学与技术,2010,33(9):97-101,196. WANG Jing, SHEN Boxiong, LIU Ting, et al. Deactivation and regeneration of SCR catalyst based on V2O5-TiO2[J]. Environmental Science & Technology, 2010, 33(9): 97-101, 196. [17] HOFFMANN T L. Experimental and numerical analysis of bimodal acoustic agglomeration[J]. Journal of Vibration and Acoustics-Transactions of the ASME, 1993, 115: 232-240. [18] Rodriguez-Maroto J J, Gomez-Moreno F J, Martin-Espigares M, et al. Acoustic agglomeration for electrostatic retention of fly-ashes at pilot scale: Influence of Intensity of sound field at different conditions [J]. Journal of Aerosol Science, 1996, 127: 621-622. [19] ZHUANG Y, PRATIM B. Submicrometer particle formation and control in a bench-scale pulverized coal combustor [J]. American Chemical Society, 2001, 27(3): 510-516. [20] 王宇翔. 300 MW燃煤电站细微颗粒物化学团聚系统设计及团聚数值模拟[D]. 武汉:华中科技大学,2011. [21] 赵汶,刘勇,鲍静静,等. 化学团聚促进燃煤细颗粒物脱除的试验研究[J]. 中国电机工程学报,2013,23(20):52-58. ZHAO Wen, LIU Yong, BAO Jingjing, et al. Experimental research on fine particles removal from flue gas by chemical agglomeration [J]. Proceedings of the CSEE, 2013, 23(20): 52-58. [22] 李海龙,张军营,杨艳,等. 细微颗粒物化学团聚及其影响因素研究[C]//中国工程热物理学会燃烧学2009年学术会议论文集. [23] 沈伯雄,王成东,郭宾彬,等. 控制氮氧化物排放的低温SCR催化剂及工程应用[J]. 电站系统工程,2006,22(4):30-32,34. SHEN Boxiong, WANG Chengdong, GUO Binbin, et al. Low temperature selective catalytic reduction(SCR) technology and engineering application[J]. Power System Engineering, 2006, 22(4): 30-32, 34. [24] Due-Hansen J, KUSTOV A L, RASMUSSEN S B, et al. Tungstated zirconia as promising carrier for De-NOx catalysts with improved resistance towards alkali poisoning [J]. Applied Catalysis B: Environmental, 2006, 66(3-4): 161-167. [25] KUSTOV A L, RASMUSSEN S B, FEHRMANN R, et al. Activity and deactivation of sulphated TiO2- and ZrO2- based V, Cu, and Fe oxide catalysts for NO abatement in alkali containing flue gases [J]. Applied Catalysis B: Environmental, 2007, 76(1-2): 9-14. [26] PARVULESCU V I, GRANGE P, DELMON B. Catalytic removal of NO [J]. Catalysis Today, 1998, 46(4): 233-316. [27] Jensen-Holm H, TOPSE N,崔建华,等. 选择催化还原(SCR)脱硝技术在中国燃煤锅炉上的应用(上)[J]. 热力发电,2007, 36(8):13-18. Jensen-Holm H, TOPSE N, CUI Jianhua, et al. Application of SCR denitrification technology onto coal-fired boilers in China [J]. Thermal Power Generation, 2007, 36(8): 13-18. |