Electric Power ›› 2025, Vol. 58 ›› Issue (11): 193-204.DOI: 10.11930/j.issn.1004-9649.202404032
• New-Type Power Grid • Previous Articles Next Articles
LI Cheng1(
), ZHANG Haiyu2(
), SONG Huihui2(
), QU Yanbin2, ZHANG Xin3, LI Yingying3
Received:2024-04-07
Revised:2024-12-09
Online:2025-12-01
Published:2025-11-28
Supported by:LI Cheng, ZHANG Haiyu, SONG Huihui, QU Yanbin, ZHANG Xin, LI Yingying. Islanded Microgrid System Modeling Based on Kuramoto Coupled Oscillator Theory[J]. Electric Power, 2025, 58(11): 193-204.
| 有无 惯性 | 发电单元 | 负荷单元 | 馈线单元 | 储能单元 | ||||
| 有 | 小型柴油 发电机; 双轴结构的 微型燃气轮机 | 电机型负荷 | — | — | ||||
| 无 | 变速风力发电; 光伏发电; 单轴结构的 微型燃气轮机 | 频率型负荷; 恒功率型负荷; 恒导纳型负荷 | 内部馈线 PCC开关 | 飞轮储能; 蓄电池储能; 超级电容; 燃料电池 |
Table 1 Element component partition in microgrid
| 有无 惯性 | 发电单元 | 负荷单元 | 馈线单元 | 储能单元 | ||||
| 有 | 小型柴油 发电机; 双轴结构的 微型燃气轮机 | 电机型负荷 | — | — | ||||
| 无 | 变速风力发电; 光伏发电; 单轴结构的 微型燃气轮机 | 频率型负荷; 恒功率型负荷; 恒导纳型负荷 | 内部馈线 PCC开关 | 飞轮储能; 蓄电池储能; 超级电容; 燃料电池 |
| 典型无惯性单元 | 模型 | |
微网PCC开关节点![]() | 微网并网模式: 恒功率DER单元 | |
| 微网孤岛模式: 馈线单元 | ||
恒功率型负荷模型![]() | ||
| 恒电纳型负荷模型 | Kron化简 |
Table 2 Special Kuramoto oscillator models without inertia
| 典型无惯性单元 | 模型 | |
微网PCC开关节点![]() | 微网并网模式: 恒功率DER单元 | |
| 微网孤岛模式: 馈线单元 | ||
恒功率型负荷模型![]() | ||
| 恒电纳型负荷模型 | Kron化简 |
| 节点 | 节点特性 | Mi(×104) | Di(×105) | PM,i(×104) | Ei | |||||
| 2 | 风力发电单元 | 0 | 0.56 | 1 | 310 | |||||
| 3 | 柴油发电机 | 0.61 | 0.83 | 2 | 310 | |||||
| 4 | 储能单元 | 0 | 1.60 | 3 | 310 | |||||
| 5 | 综合负荷单元 | 1.51 | 0.60 | –6 | 310 |
Table 4 Parameters of each node
| 节点 | 节点特性 | Mi(×104) | Di(×105) | PM,i(×104) | Ei | |||||
| 2 | 风力发电单元 | 0 | 0.56 | 1 | 310 | |||||
| 3 | 柴油发电机 | 0.61 | 0.83 | 2 | 310 | |||||
| 4 | 储能单元 | 0 | 1.60 | 3 | 310 | |||||
| 5 | 综合负荷单元 | 1.51 | 0.60 | –6 | 310 |
| 线路 | 节点 | 单位阻抗大小/(Ω·km–1) | 长度/km | |||
| 1 | 1-2 | 100 | ||||
| 2 | 2-3 | 2 | ||||
| 3 | 2-4 | 2 | ||||
| 4 | 2-5 | 1 | ||||
| 5 | 3-4 | 2 | ||||
| 6 | 3-5 | 1 | ||||
| 7 | 4-5 | 1 |
Table 3 Line impedance parameters
| 线路 | 节点 | 单位阻抗大小/(Ω·km–1) | 长度/km | |||
| 1 | 1-2 | 100 | ||||
| 2 | 2-3 | 2 | ||||
| 3 | 2-4 | 2 | ||||
| 4 | 2-5 | 1 | ||||
| 5 | 3-4 | 2 | ||||
| 6 | 3-5 | 1 | ||||
| 7 | 4-5 | 1 |
| 节点号 | R + jX | aij(×104) | φij | |||
| 2-3 | 1.282+j5.36×10–3 | 3.77 | –0.3 | |||
| 2-4 | 1.282+j5.36×10–3 | 3.77 | –0.4 | |||
| 2-5 | 7.54 | 0.3 | ||||
| 3-4 | 1.282+j5.36×10–3 | 3.77 | –0.1 | |||
| 3-5 | 7.54 | 0.6 |
Table 5 Parameters between nodes
| 节点号 | R + jX | aij(×104) | φij | |||
| 2-3 | 1.282+j5.36×10–3 | 3.77 | –0.3 | |||
| 2-4 | 1.282+j5.36×10–3 | 3.77 | –0.4 | |||
| 2-5 | 7.54 | 0.3 | ||||
| 3-4 | 1.282+j5.36×10–3 | 3.77 | –0.1 | |||
| 3-5 | 7.54 | 0.6 |
| 1 | 丁坤, 陈博洋, 秦建茹, 等. 大规模新能源集群接入弱电网的消纳能力评估方法[J]. 电力建设, 2023, 44 (11): 86- 94. |
| DING Kun, CHEN Boyang, QIN Jianru, et al. Evaluation method of consumption ability of new large scale energy clusters connected to weak grids[J]. Electric Power Construction, 2023, 44 (11): 86- 94. | |
| 2 | 林其友, 蒋文良, 李媛媛, 等. 基于母线电压分层的直流微网系统协调控制[J]. 中国电力, 2022, 55 (2): 166- 171,180. |
| LIN Qiyou, JIANG Wenliang, LI Yuanyuan, et al. Coordinated control of DC microgrid system based on bus voltage stratification[J]. Electric Power, 2022, 55 (2): 166- 171,180. | |
| 3 |
ROSSO R, WANG X F, LISERRE M, et al. Grid-forming converters: control approaches, grid-synchronization, and future trends—a review[J]. IEEE Open Journal of Industry Applications, 2021, 2, 93- 109.
|
| 4 | KURAMOTO Y. Self-entrainment of a population of coupled non-linear oscillators[J]. Proceedings of the International Symposium on Mathematical Problems in Theoretical Physics, 1975, 39, 420- 422. |
| 5 |
林伟廷, 曹娟. 基于Kuramoto的常规导弹作战体系同步效能评估[J]. 指挥控制与仿真, 2018, 40 (1): 75- 79.
|
|
LIN Weiting, CAO Juan. Effectiveness evaluation for synchronous characteristics of convetional missile combat system based on kuramoto model[J]. Command Control & Simulation, 2018, 40 (1): 75- 79.
|
|
| 6 | DÖRFLER F, CHERTKOV M, BULLO F. Synchronization in complex oscillator networks and smart grids[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110 (6): 2005- 2010. |
| 7 |
FILATRELLA G, NIELSEN A H, PEDERSEN N F. Analysis of a power grid using a Kuramoto-like model[J]. The European Physical Journal B, 2008, 61 (4): 485- 491.
|
| 8 | 万千, 夏成军, 管霖, 等. 含高渗透率分布式电源的独立微网的稳定性研究综述[J]. 电网技术, 2019, 43 (2): 598- 612. |
| WAN Qian, XIA Chengjun, GUAN Lin, et al. Review on stability of isolated microgrid with highly penetrated distributed generations[J]. Power System Technology, 2019, 43 (2): 598- 612. | |
| 9 | 朱蜀, 刘开培, 秦亮, 等. 电力电子化电力系统暂态稳定性分析综述[J]. 中国电机工程学报, 2017, 37 (14): 3947- 3962. |
| ZHU Shu, LIU Kaipei, QIN Liang, et al. Analysis of transient stability of power electronics dominated power system: an overview[J]. Proceedings of the CSEE, 2017, 37 (14): 3947- 3962. | |
| 10 | 周艳真, 查显煜, 兰健, 等. 基于数据增强和深度残差网络的电力系统暂态稳定预测[J]. 中国电力, 2020, 53 (1): 22- 31. |
| ZHOU Yanzhen, ZHA Xianyu, LAN Jian, et al. Transient stability prediction of power systems based on deep residual network and data augmentation[J]. Electric Power, 2020, 53 (1): 22- 31. | |
| 11 | 黎萌. 电力系统暂态稳定时域仿真终止判据的研究[D]. 杭州: 浙江大学, 2015. |
| LI Meng. Research on termination algorithm of time-domain simulation for power system transient stability[D]. Hangzhou: Zhejiang University, 2015. | |
| 12 | KUNDUR P. 电力系统稳定与控制[M]. 《电力系统稳定与控制》翻译组, 译. 北京: 中国电力出版社, 2002. |
| KUNDUR P. Power system stability and control[M]. "Power System Stability and Control"translation group, Translated. Beijing: China Electric Power Press, 2002. | |
| 13 | DÖRFLER F, BULLO F. Transient stability analysis in power networks and synchronization of non-uniform Kuramoto oscillators[J]. Journal of Nanjing Institute of Meteorology, 2009. |
| 14 |
DE PERSIS C, MONSHIZADEH N. Bregman storage functions for microgrid control[J]. IEEE Transactions on Automatic Control, 2018, 63 (1): 53- 68.
|
| 15 |
ZHU L J, HILL D J. Stability analysis of power systems: a network synchronization perspective[J]. SIAM Journal on Control and Optimization, 2018, 56 (3): 1640- 1664.
|
| 16 |
SCHMIETENDORF K, PEINKE J, KAMPS O. The impact of turbulent renewable energy production on power grid stability and quality[J]. The European Physical Journal B, 2017, 90 (11): 222.
|
| 17 |
DÖRFLER F, BULLO F. On the critical coupling for kuramoto oscillators[J]. SIAM Journal on Applied Dynamical Systems, 2011, 10 (3): 1070- 1099.
|
| 18 |
DORFLER F, BULLO F. Kron reduction of graphs with applications to electrical networks[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2013, 60 (1): 150- 163.
|
| 19 |
DORFLER F, BULLO F. Synchronization of power networks: network reduction and effective resistance[J]. IFAC Proceedings Volumes, 2010, 43 (19): 197- 202.
|
| 20 | DÖRFLER F, BULLO F. Spectral analysis of synchronization in a lossless structure-preserving power network model[C]//2010 First IEEE International Conference on Smart Grid Communications. Gaithersburg, MD, USA. IEEE, 2010: 179–184. |
| 21 | DÖRFLER F, BULLO F. Synchronization and transient stability in power networks and non-uniform Kuramoto oscillators[C]//Proceedings of the 2010 American Control Conference. Baltimore, MD, USA. IEEE, 2010: 930–937. |
| 22 | DÖRFLER F, BULLO F. Topological equivalence of a structure-preserving power network model and a non-uniform Kuramoto model of coupled oscillators[C]//2011 50th IEEE Conference on Decision and Control and European Control Conference. Orlando, FL, USA. IEEE, 2011: 7099–7104. |
| 23 |
DÖRFLER F, BULLO F. Synchronization in complex networks of phase oscillators: a survey[J]. Automatica, 2014, 50 (6): 1539- 1564.
|
| 24 | 杨柳. 基于二阶非均匀Kuramoto模型的电力系统暂态稳定分析[D]. 哈尔滨: 哈尔滨工业大学, 2015. |
| YANG Liu. Power system transient stability analysis via second-order non-uniform kuramoto model[D]. Harbin: Harbin Institute of Technology, 2015. | |
| 25 | SONAM K, WAGH S R, SINGH N M. Synchronized operating point stability of multimachine power system using holomorphic embedding in kuramoto framework[C]//2019 North American Power Symposium (NAPS). Wichita, KS, USA. IEEE, 2019: 1–6. |
| 26 | 张谦. 基于改进Gronwall不等式的电力系统暂态稳定研究[D]. 杭州: 浙江大学, 2022. |
| ZHANG Qian. Stability based on improved Gronwall inequality[D]. Hangzhou: Zhejiang University, 2022. | |
| 27 |
WU L, POTA H R, PETERSEN I R. Synchronization conditions for a multirate kuramoto network with an arbitrary topology and nonidentical oscillators[J]. IEEE Transactions on Cybernetics, 2019, 49 (6): 2242- 2254.
|
| 28 |
CHOI Y P, LI Z C. Synchronization of nonuniform Kuramoto oscillators for power grids with general connectivity and dampings[J]. Nonlinearity, 2019, 32 (2): 559- 583.
|
| 29 | 邹焱. 基于Kuramoto模型的电力系统暂态稳定性分析与提升方法[D]. 杭州: 浙江大学, 2023. |
| 30 | 郑志刚, 李晓文, 张廷宪. 同步现象: Kuramoto模型及其他[C]//2007年全国复杂系统研究论坛. 北京: 2007年全国复杂系统研究论坛论文汇编, 2005: 379–394. |
| ZHENG Zhigang, LI Xiaowen, ZHANG Tingxian. Synchronization phenomenon: Kuramoto model and others[C]//2007 National Forum on complex Systems Research. Beijing, China: Papers Compilation of the National Forum on complex Systems Research 2007, 2005: 379–394. | |
| 31 | 薛小平. 关于2类群体运动模型的综述: Cucker-Smale模型与Kuramoto模型[J]. 四川师范大学学报(自然科学版), 2017, 40 (6): 711- 721. |
| XUE Xiaoping. A survey on two types of multi-agent models: the Cucker-Smale model and the Kuramoto model[J]. Journal of Sichuan Normal University (Natural Science), 2017, 40 (6): 711- 721. | |
| 32 |
CONROY J F, WATSON R. Frequency response capability of full converter wind turbine generators in comparison to conventional generation[J]. IEEE Transactions on Power Systems, 2008, 23 (2): 649- 656.
|
| 33 |
毋炳鑫, 谢卫华, 叶红恩. 交直流混合微电网直流母线电压稳定控制技术[J]. 中国电力, 2017, 50 (1): 62- 66.
|
|
WU Bingxin, XIE Weihua, YE Hongen. Study on DC bus voltage deviation control autonomy in hybrid AC/DC micro-grid[J]. Electric Power, 2017, 50 (1): 62- 66.
|
|
| 34 | 李佳蔚, 张冠宇. 大规模分布式新能源接入对省级电网稳定性影响[J]. 中国电力, 2024, 57 (6): 174- 180. |
| LI Jiawei, ZHANG Guanyu. Impact of large scale distributed new energy access on provincial power grid stability[J]. Electric Power, 2024, 57 (6): 174- 180. | |
| 35 | 孙佳航, 王小华, 黄景光, 等. 基于MPC-VSG的孤岛微电网频率和电压动态稳定控制策略[J]. 中国电力, 2023, 56 (6): 51- 60, 81. |
| SUN Jiahang, WANG Xiaohua, HUANG Jingguang, et al. MPC-VSG based control strategy for dynamic stability of frequency and voltage in islanded microgrid[J]. Electric Power, 2023, 56 (6): 51- 60, 81. |
| [1] | WANG Xuejun, FANG Shuiping, CHI Guangyong. Transient Stability Assessment Method for Multi-machine Power Systems Considering Dense Channels [J]. Electric Power, 2025, 58(8): 139-146. |
| [2] | WANG Li, JIANG Yuxiang, ZENG Xiangjun, ZHAO Bin, LI Junhao. Secondary Frequency Control of Islanded Microgrid Based on Deep Reinforcement Learning [J]. Electric Power, 2025, 58(5): 176-188. |
| [3] | Chaobo DAI, Guoliang ZHAO, Zhichang YANG, Jingxin CUI. Improvement and Comparison of Single-Phase Frequency Locked Loops Based on Second Order Generalized Integrator [J]. Electric Power, 2025, 58(1): 61-69. |
| [4] | Chenhao ZHAO, Zaibin JIAO, Chenghao LI, Di ZHANG, Penghui ZHANG. Adaptive Assessment of Power System Transient Stability Based on Active Transfer Learning [J]. Electric Power, 2025, 58(1): 70-77. |
| [5] | Dan LIU, Kezheng JIANG, Yiqun KANG, Xiaotong JI, Yunyu XU, Fang LIU. Self-synchronization Voltage Source LVRT Control Method for New Energy Inverter under Weak Grid [J]. Electric Power, 2024, 57(7): 21-29. |
| [6] | Jiawei LI, Guanyu ZHANG. Impact of Large Scale Distributed New Energy Access on Provincial Power Grid Stability [J]. Electric Power, 2024, 57(6): 174-180. |
| [7] | Shengcun ZHOU, Yi LUO, Xuancheng YI, Yaning WU, Ding LI, Yi XIONG. Transient Stability Assessment of Graph Attention Networks Considering Data Missing [J]. Electric Power, 2024, 57(5): 157-167. |
| [8] | Qihe LOU, Rongsheng LI, Jie TAN, Tiejiang YUAN. Calculation of Transient Stability Limit Based on Convolutional Neural Network [J]. Electric Power, 2024, 57(4): 211-219. |
| [9] | Baojiang TIAN, Yan LI, Xiaoyu LIAO, Xingwei DU, Wenyan DUAN. Multi-site Information Synchronization Scheme Based on Wavelet Transform to Detect Signal Singularity [J]. Electric Power, 2024, 57(12): 188-197. |
| [10] | SUN Jiahang, WANG Xiaohua, HUANG Jingguang, CAO Hao, MEI Nuonan, LI Zhedong. MPC-VSG Based Control Strategy for Dynamic Stability of Frequency and Voltage in Islanded Microgrid [J]. Electric Power, 2023, 56(6): 51-60,81. |
| [11] | LI Zhenyao, GAN Deqiang, LUAN Moude, HE Guoqing. Frequency Stability Analysis Based on Full State Model in Autonomous-Synchronization Voltage Source Interfaced Power System [J]. Electric Power, 2023, 56(5): 182-192. |
| [12] | WANG Hui, CAO Yi, LUO Ning, GAO Hua, ZHANG Yan, ZHANG Yu, CHENG Haozhong. Switching Technology of Three-Terminals Soft Open Point Control Mode [J]. Electric Power, 2023, 56(4): 104-111. |
| [13] | ZHANG Peiling, ZHAO Keke. Design and Implementation of Low Voltage Power Communication System Based on Single Frequency Communication [J]. Electric Power, 2023, 56(3): 118-127,136. |
| [14] | Yan HUANG, Yingpeng HAO, Huixian WANG, Longye ZHENG, Kaizhe ZHANG, Yinliang XU. Research on Synchronization Control of Distributed Generation Based on Second-Order Unified Model [J]. Electric Power, 2023, 56(12): 41-50. |
| [15] | Jianjun DAI, Mingming WANG, Yunhan YOU, Yu ZHANG. Research on Active Support and Operation Control Network of Wind Turbine Based on Time-Sensitive Network [J]. Electric Power, 2023, 56(10): 53-61. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
