Electric Power ›› 2024, Vol. 57 ›› Issue (5): 157-167.DOI: 10.11930/j.issn.1004-9649.202307019
• Power System • Previous Articles Next Articles
Shengcun ZHOU(), Yi LUO(
), Xuancheng YI, Yaning WU, Ding LI, Yi XIONG
Received:
2023-07-06
Accepted:
2023-10-04
Online:
2024-05-23
Published:
2024-05-28
Supported by:
Shengcun ZHOU, Yi LUO, Xuancheng YI, Yaning WU, Ding LI, Yi XIONG. Transient Stability Assessment of Graph Attention Networks Considering Data Missing[J]. Electric Power, 2024, 57(5): 157-167.
编号 | 安装PMU的母线位置 | 总数 | ||
1 | 3, 8, 10, 16, 20, 23, 25, 29 | 8 | ||
2 | 3, 8, 12, 16, 20, 23, 25, 29 | 8 | ||
3 | 2, 6, 9, 10, 13, 14, 17, 19, 20, 22, 23, 25, 29 | 13 | ||
4 | 2, 6, 9, 10, 11, 14, 17, 19, 20, 22, 23, 25, 29 | 13 |
Table 1 Layout schemes of different PMUs
编号 | 安装PMU的母线位置 | 总数 | ||
1 | 3, 8, 10, 16, 20, 23, 25, 29 | 8 | ||
2 | 3, 8, 12, 16, 20, 23, 25, 29 | 8 | ||
3 | 2, 6, 9, 10, 13, 14, 17, 19, 20, 22, 23, 25, 29 | 13 | ||
4 | 2, 6, 9, 10, 11, 14, 17, 19, 20, 22, 23, 25, 29 | 13 |
模型 | 布局方案误差率/% | |||||||
方案1 | 方案2 | 方案3 | 方案4 | |||||
GAT | 0.37 | 1.06 | 0.25 | 0.41 | ||||
RVFL | 0.42 | 1.22 | 0.49 | 0.50 |
Table 2 The error rate of models
模型 | 布局方案误差率/% | |||||||
方案1 | 方案2 | 方案3 | 方案4 | |||||
GAT | 0.37 | 1.06 | 0.25 | 0.41 | ||||
RVFL | 0.42 | 1.22 | 0.49 | 0.50 |
PMU缺 失数量 | GAT模型 | RVFL模型 | ||||||||||
R | P | R | P | |||||||||
0 | 98.90 | 99.23 | 99.06 | 98.73 | 98.97 | 98.85 | ||||||
1 | 98.58 | 98.95 | 98.76 | 98.60 | 98.37 | 98.48 | ||||||
2 | 98.46 | 98.23 | 98.34 | 98.40 | 97.85 | 98.12 | ||||||
3 | 98.18 | 98.00 | 98.09 | 97.98 | 97.57 | 97.79 | ||||||
4 | 97.87 | 97.72 | 97.80 | 97.53 | 97.25 | 97.39 |
Table 3 The assessment effect of models 单位:%
PMU缺 失数量 | GAT模型 | RVFL模型 | ||||||||||
R | P | R | P | |||||||||
0 | 98.90 | 99.23 | 99.06 | 98.73 | 98.97 | 98.85 | ||||||
1 | 98.58 | 98.95 | 98.76 | 98.60 | 98.37 | 98.48 | ||||||
2 | 98.46 | 98.23 | 98.34 | 98.40 | 97.85 | 98.12 | ||||||
3 | 98.18 | 98.00 | 98.09 | 97.98 | 97.57 | 97.79 | ||||||
4 | 97.87 | 97.72 | 97.80 | 97.53 | 97.25 | 97.39 |
场景 | 平均准确率/% | |||||||||
1) | 98.67 | 98.53 | 98.27 | 98.00 | 97.64 | |||||
2) | 98.83 | 98.24 | 97.54 | 96.70 | 96.10 | |||||
3) | 99.23 | 98.66 | 98.17 | 97.54 | 97.15 | |||||
4) | 98.49 | 97.84 | 97.19 | 96.56 | 96.03 |
Table 4 The assessment effect of GAT models
场景 | 平均准确率/% | |||||||||
1) | 98.67 | 98.53 | 98.27 | 98.00 | 97.64 | |||||
2) | 98.83 | 98.24 | 97.54 | 96.70 | 96.10 | |||||
3) | 99.23 | 98.66 | 98.17 | 97.54 | 97.15 | |||||
4) | 98.49 | 97.84 | 97.19 | 96.56 | 96.03 |
场景 | 平均准确率/% | |||||||||
1) | 98.87 | 98.76 | 98.58 | 98.44 | 98.05 | |||||
2) | 98.89 | 98.58 | 98.32 | 97.88 | 97.27 | |||||
3) | 99.31 | 98.81 | 98.34 | 97.93 | 97.66 | |||||
4) | 98.53 | 98.02 | 97.53 | 96.96 | 96.75 |
Table 5 The assessment effect of GAT models after fine-tuning
场景 | 平均准确率/% | |||||||||
1) | 98.87 | 98.76 | 98.58 | 98.44 | 98.05 | |||||
2) | 98.89 | 98.58 | 98.32 | 97.88 | 97.27 | |||||
3) | 99.31 | 98.81 | 98.34 | 97.93 | 97.66 | |||||
4) | 98.53 | 98.02 | 97.53 | 96.96 | 96.75 |
模型 | 训练时长/s | 评估时长/ms | ||||
单次评估 | 单个样本 | |||||
GAT | 1535.20 | 23280 | 2.91 | |||
RVFL | 2026.74 | 27960 | 3.49 |
Table 6 Data processing speed of the GAT model
模型 | 训练时长/s | 评估时长/ms | ||||
单次评估 | 单个样本 | |||||
GAT | 1535.20 | 23280 | 2.91 | |||
RVFL | 2026.74 | 27960 | 3.49 |
1 |
汪泽州, 张明明, 钱峰强, 等. 含光伏接入的中压配电网集中调控优化策略[J]. 中国电力, 2023, 56 (2): 15- 22.
DOI |
WANG Zezhou, ZHANG Mingming, QIAN Fengqiang, et al. Centralized regulation and optimization strategy for MV distribution network with PV integration[J]. Electric Power, 2023, 56 (2): 15- 22.
DOI |
|
2 |
马兆兴, 秦昌民, 朱文杰, 等. 考虑多时间尺度特征的电力系统稳定性界分析[J]. 电力系统保护与控制, 2021, 41 (2): 461- 475.
DOI |
MA Zhaoxing, QIN Changmin, ZHU Wenjie, et al. Analysis of the stability bound of a power system considering multi-time scale characteristics[J]. Power System Protection and Control, 2021, 41 (2): 461- 475.
DOI |
|
3 | 康重庆, 杜尔顺, 郭鸿业, 等. 新型电力系统的六要素分析[J]. 电网技术, 2023, 47 (5): 1741- 1750. |
KANG Chongqing, DU Ershun, GUO Hongye, et al. Primary exploration of six essential factors in new power system[J]. Power System Technology, 2023, 47 (5): 1741- 1750. | |
4 | 蔡欢, 袁旭峰, 熊炜, 等. 柔性互联配电网运行调度研究综述[J]. 智慧电力, 2022, 50 (6): 92- 99, 106. |
CAI Huan, YUAN Xufeng, XIONG Wei, et al. Review on operation scheduling of flexible interconnected distribution network[J]. Smart Power, 2022, 50 (6): 92- 99, 106. | |
5 |
GURRALA G, DINESHA D L, DIMITROVSKI A, et al. Large multi-machine power system simulations using multi-stage adomian decomposition[J]. IEEE Transactions on Power Systems, 2017, 32 (5): 3594- 3606.
DOI |
6 |
VU T L, TURITSYN K. Lyapunov functions family approach to transient stability assessment[J]. IEEE Transactions on Power Systems, 2016, 31 (2): 1269- 1277.
DOI |
7 |
单瑞卿, 盛阳, 苏盛, 等. 考虑攻击方身份的电力监控系统网络安全风险分析[J]. 电力科学与技术学报, 2022, 37 (5): 3- 16.
DOI |
SHAN Ruiqing, SHENG Yang, SU Sheng, et al. Risk analysis of power system cyber security considering identity of malicious adversaries[J]. Journal of Electric Power Science and Technology, 2022, 37 (5): 3- 16.
DOI |
|
8 |
汤涌, 姚伟, 王宏志, 等. 电网仿真分析与决策的人工智能方法[J]. 中国电机工程学报, 2022, 42 (15): 5384- 5406.
DOI |
TANG Yong, YAO Wei, WANG Hongzhi, et al. Artificial intelligence techniques for power grid simulation analysis and decision making[J]. Proceedings of the CSEE, 2022, 42 (15): 5384- 5406.
DOI |
|
9 | 周艳真, 查显煜, 兰健, 等. 基于数据增强和深度残差网络的电力系统暂态稳定预测[J]. 中国电力, 2020, 53 (1): 22- 31. |
ZHOU Yanzhen, ZHA Xianyu, LAN Jian, et al. Transient stability prediction of power systems based on deep residual network and data augmentation[J]. Electric Power, 2020, 53 (1): 22- 31. | |
10 |
ZHANG Y C, XU Y, ZHANG R, et al. A missing-data tolerant method for data-driven short-term voltage stability assessment of power systems[J]. IEEE Transactions on Smart Grid, 2019, 10 (5): 5663- 5674.
DOI |
11 |
HE M, VITTAL V, ZHANG J S. Online dynamic security assessment with missing pmu measurements: a data mining approach[J]. IEEE Transactions on Power Systems, 2013, 28 (2): 1969- 1977.
DOI |
12 | ZHANG Y C, XU Y, DONG Z Y. Robust classification model for PMU-based on-line power system DSA with missing data[J]. IET Generation, Transmission & Distribution, 2017, 11 (18): 4484- 4491. |
13 |
ZHANG Y C, XU Y, DONG Z Y. Robust ensemble data analytics for incomplete PMU measurements-based power system stability assessment[J]. IEEE Transactions on Power Systems, 2018, 33 (1): 1124- 1126.
DOI |
14 |
谭本东, 杨军, 刘源, 等. 考虑数据缺失的电力系统暂态稳定自适应集成评估方法[J]. 电力系统自动化, 2021, 45 (23): 68- 75.
DOI |
TAN Bendong, YANG Jun, LIU Yuan, et al. Adaptive integrated assessment method for transient stability of power system considering PMU data missing[J]. Automation of Electric Power Systems, 2021, 45 (23): 68- 75.
DOI |
|
15 |
REN C, XU Y, DAI B J, et al. An integrated transfer learning method for power system dynamic security assessment of unlearned faults with missing data[J]. IEEE Transactions on Power Systems, 2021, 36 (5): 4856- 4859.
DOI |
16 |
YU J J Q, LAM A Y S, HILL D J, et al. Delay aware power system synchrophasor recovery and prediction framework[J]. IEEE Transactions on Smart Grid, 2019, 10 (4): 3732- 3742.
DOI |
17 |
GAO P Z, WANG M, GHIOCEL S G, et al. Missing data recovery by exploiting low-dimensionality in power system synchrophasor measurements[J]. IEEE Transactions on Power Systems, 2016, 31 (2): 1006- 1013.
DOI |
18 |
REN C, XU Y. A fully data-driven method based on generative adversarial networks for power system dynamic security assessment with missing data[J]. IEEE Transactions on Power Systems, 2019, 34 (6): 5044- 5052.
DOI |
19 | 钟智, 管霖, 苏寅生, 等. 基于图注意力深度网络的电力系统暂态稳定评估[J]. 电网技术, 2021, 45 (6): 2122- 2130. |
ZHONG Zhi, GUAN Lin, SU Yinsheng, et al. Power system transient stability assessment based on graph attention deep network[J]. Power System Technology, 2021, 45 (6): 2122- 2130. | |
20 |
曹鹏, 刘敏. 基于改进的整数规划法结合零注入节点的PMU优化配置方法[J]. 电力系统保护与控制, 2021, 49 (16): 143- 150.
DOI |
CAO Peng, LIU Min. PMU placement method based on improved integer programming method combined with zero injection buses[J]. Power System Protection and Control, 2021, 49 (16): 143- 150.
DOI |
|
21 | 李佳玮, 王小君, 和敬涵, 等. 基于图注意力网络的配电网故障定位方法[J]. 电网技术, 2021, 45 (6): 2113- 2121. |
LI Jiawei, WANG Xiaojun, HE Jinghan, et al. Distribution network fault location based on graph attention network[J]. Power System Technology, 2021, 45 (6): 2113- 2121. | |
22 | 朱思婷, 管霖, 黄济宇, 等. 面向稳控策略校核的并联图注意力网络稳定评估模型[J]. 电网技术, 2023, 47 (9): 3836- 3846. |
ZHU Siting, GUAN Lin, HUANG Jiyu, et al. Parallel graph attention network based transient stability assessment model for stability control strategy checking[J]. Power System Technology, 2023, 47 (9): 3836- 3846. | |
23 | 李楠, 朱嫄, 崔莹. 考虑代价敏感的AC-LSTM暂态稳定评估[J]. 电力系统保护与控制, 2022, 50 (22): 160- 169. |
LI Nan, ZHU Yuan, CUI Ying. AC-LSTM transient stability assessment considering cost-sensitivity[J]. Power System Protection and Control, 2022, 50 (22): 160- 169. | |
24 | 李保罗, 孙华东, 张恒旭, 等. 基于两阶段迁移学习的电力系统暂态稳定评估框架[J]. 电力系统自动化, 2022, 46 (17): 176- 185. |
LI Baoluo, SUN Huadong, ZHANG Hengxu, et al. Transient stability assessment framework of power system based on two-stage transfer learning[J]. Automation of Electric Power Systems, 2022, 46 (17): 176- 185. | |
25 |
田书欣, 李昆鹏, 魏书荣, 等. 基于同步相量测量装置的配电网安全态势感知方法[J]. 中国电机工程学报, 2021, 41 (2): 617- 632.
DOI |
TIAN Shuxin, LI Kunpeng, WEI Shurong, et al. Security situation awareness approach for distribution network based on synchronous phasor measurement unit[J]. Proceedings of the CSEE, 2021, 41 (2): 617- 632.
DOI |
[1] | Chenhao ZHAO, Zaibin JIAO, Chenghao LI, Di ZHANG, Penghui ZHANG. Adaptive Assessment of Power System Transient Stability Based on Active Transfer Learning [J]. Electric Power, 2025, 58(1): 70-77. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||