Electric Power ›› 2024, Vol. 57 ›› Issue (5): 157-167.DOI: 10.11930/j.issn.1004-9649.202307019
• Power System • Previous Articles Next Articles
					
													Shengcun ZHOU(
), Yi LUO(
), Xuancheng YI, Yaning WU, Ding LI, Yi XIONG
												  
						
						
						
					
				
Received:2023-07-06
															
							
															
							
																	Accepted:2023-10-04
															
							
																	Online:2024-05-23
															
							
							
																	Published:2024-05-28
															
							
						Supported by:Shengcun ZHOU, Yi LUO, Xuancheng YI, Yaning WU, Ding LI, Yi XIONG. Transient Stability Assessment of Graph Attention Networks Considering Data Missing[J]. Electric Power, 2024, 57(5): 157-167.
| 编号 | 安装PMU的母线位置 | 总数 | ||
| 1 | 3, 8, 10, 16, 20, 23, 25, 29 | 8 | ||
| 2 | 3, 8, 12, 16, 20, 23, 25, 29 | 8 | ||
| 3 | 2, 6, 9, 10, 13, 14, 17, 19, 20, 22, 23, 25, 29 | 13 | ||
| 4 | 2, 6, 9, 10, 11, 14, 17, 19, 20, 22, 23, 25, 29 | 13 | 
Table 1 Layout schemes of different PMUs
| 编号 | 安装PMU的母线位置 | 总数 | ||
| 1 | 3, 8, 10, 16, 20, 23, 25, 29 | 8 | ||
| 2 | 3, 8, 12, 16, 20, 23, 25, 29 | 8 | ||
| 3 | 2, 6, 9, 10, 13, 14, 17, 19, 20, 22, 23, 25, 29 | 13 | ||
| 4 | 2, 6, 9, 10, 11, 14, 17, 19, 20, 22, 23, 25, 29 | 13 | 
| 模型 | 布局方案误差率/% | |||||||
| 方案1 | 方案2 | 方案3 | 方案4 | |||||
| GAT | 0.37 | 1.06 | 0.25 | 0.41 | ||||
| RVFL | 0.42 | 1.22 | 0.49 | 0.50 | ||||
Table 2 The error rate of models
| 模型 | 布局方案误差率/% | |||||||
| 方案1 | 方案2 | 方案3 | 方案4 | |||||
| GAT | 0.37 | 1.06 | 0.25 | 0.41 | ||||
| RVFL | 0.42 | 1.22 | 0.49 | 0.50 | ||||
| PMU缺 失数量  | GAT模型 | RVFL模型 | ||||||||||
| R | P | R | P | |||||||||
| 0 | 98.90 | 99.23 | 99.06 | 98.73 | 98.97 | 98.85 | ||||||
| 1 | 98.58 | 98.95 | 98.76 | 98.60 | 98.37 | 98.48 | ||||||
| 2 | 98.46 | 98.23 | 98.34 | 98.40 | 97.85 | 98.12 | ||||||
| 3 | 98.18 | 98.00 | 98.09 | 97.98 | 97.57 | 97.79 | ||||||
| 4 | 97.87 | 97.72 | 97.80 | 97.53 | 97.25 | 97.39 | ||||||
Table 3 The assessment effect of models 单位:%
| PMU缺 失数量  | GAT模型 | RVFL模型 | ||||||||||
| R | P | R | P | |||||||||
| 0 | 98.90 | 99.23 | 99.06 | 98.73 | 98.97 | 98.85 | ||||||
| 1 | 98.58 | 98.95 | 98.76 | 98.60 | 98.37 | 98.48 | ||||||
| 2 | 98.46 | 98.23 | 98.34 | 98.40 | 97.85 | 98.12 | ||||||
| 3 | 98.18 | 98.00 | 98.09 | 97.98 | 97.57 | 97.79 | ||||||
| 4 | 97.87 | 97.72 | 97.80 | 97.53 | 97.25 | 97.39 | ||||||
| 场景 | 平均准确率/% | |||||||||
| 1) | 98.67 | 98.53 | 98.27 | 98.00 | 97.64 | |||||
| 2) | 98.83 | 98.24 | 97.54 | 96.70 | 96.10 | |||||
| 3) | 99.23 | 98.66 | 98.17 | 97.54 | 97.15 | |||||
| 4) | 98.49 | 97.84 | 97.19 | 96.56 | 96.03 | |||||
Table 4 The assessment effect of GAT models
| 场景 | 平均准确率/% | |||||||||
| 1) | 98.67 | 98.53 | 98.27 | 98.00 | 97.64 | |||||
| 2) | 98.83 | 98.24 | 97.54 | 96.70 | 96.10 | |||||
| 3) | 99.23 | 98.66 | 98.17 | 97.54 | 97.15 | |||||
| 4) | 98.49 | 97.84 | 97.19 | 96.56 | 96.03 | |||||
| 场景 | 平均准确率/% | |||||||||
| 1) | 98.87 | 98.76 | 98.58 | 98.44 | 98.05 | |||||
| 2) | 98.89 | 98.58 | 98.32 | 97.88 | 97.27 | |||||
| 3) | 99.31 | 98.81 | 98.34 | 97.93 | 97.66 | |||||
| 4) | 98.53 | 98.02 | 97.53 | 96.96 | 96.75 | |||||
Table 5 The assessment effect of GAT models after fine-tuning
| 场景 | 平均准确率/% | |||||||||
| 1) | 98.87 | 98.76 | 98.58 | 98.44 | 98.05 | |||||
| 2) | 98.89 | 98.58 | 98.32 | 97.88 | 97.27 | |||||
| 3) | 99.31 | 98.81 | 98.34 | 97.93 | 97.66 | |||||
| 4) | 98.53 | 98.02 | 97.53 | 96.96 | 96.75 | |||||
| 模型 | 训练时长/s | 评估时长/ms | ||||
| 单次评估 | 单个样本 | |||||
| GAT | 1535.20 | 23280 | 2.91 | |||
| RVFL | 2026.74 | 27960 | 3.49 | |||
Table 6 Data processing speed of the GAT model
| 模型 | 训练时长/s | 评估时长/ms | ||||
| 单次评估 | 单个样本 | |||||
| GAT | 1535.20 | 23280 | 2.91 | |||
| RVFL | 2026.74 | 27960 | 3.49 | |||
| 1 |  
											汪泽州, 张明明, 钱峰强, 等. 含光伏接入的中压配电网集中调控优化策略[J]. 中国电力, 2023, 56 (2): 15- 22. 
																							 DOI  | 
										
|  
											WANG Zezhou, ZHANG Mingming, QIAN Fengqiang, et al. Centralized regulation and optimization strategy for MV distribution network with PV integration[J]. Electric Power, 2023, 56 (2): 15- 22. 
																							 DOI  | 
										|
| 2 |  
											马兆兴, 秦昌民, 朱文杰, 等. 考虑多时间尺度特征的电力系统稳定性界分析[J]. 电力系统保护与控制, 2021, 41 (2): 461- 475. 
																							 DOI  | 
										
|  
											MA Zhaoxing, QIN Changmin, ZHU Wenjie, et al. Analysis of the stability bound of a power system considering multi-time scale characteristics[J]. Power System Protection and Control, 2021, 41 (2): 461- 475. 
																							 DOI  | 
										|
| 3 | 康重庆, 杜尔顺, 郭鸿业, 等. 新型电力系统的六要素分析[J]. 电网技术, 2023, 47 (5): 1741- 1750. | 
| KANG Chongqing, DU Ershun, GUO Hongye, et al. Primary exploration of six essential factors in new power system[J]. Power System Technology, 2023, 47 (5): 1741- 1750. | |
| 4 | 蔡欢, 袁旭峰, 熊炜, 等. 柔性互联配电网运行调度研究综述[J]. 智慧电力, 2022, 50 (6): 92- 99, 106. | 
| CAI Huan, YUAN Xufeng, XIONG Wei, et al. Review on operation scheduling of flexible interconnected distribution network[J]. Smart Power, 2022, 50 (6): 92- 99, 106. | |
| 5 |  
											GURRALA G, DINESHA D L, DIMITROVSKI A, et al. Large multi-machine power system simulations using multi-stage adomian decomposition[J]. IEEE Transactions on Power Systems, 2017, 32 (5): 3594- 3606. 
																							 DOI  | 
										
| 6 |  
											VU T L, TURITSYN K. Lyapunov functions family approach to transient stability assessment[J]. IEEE Transactions on Power Systems, 2016, 31 (2): 1269- 1277. 
																							 DOI  | 
										
| 7 |  
											单瑞卿, 盛阳, 苏盛, 等. 考虑攻击方身份的电力监控系统网络安全风险分析[J]. 电力科学与技术学报, 2022, 37 (5): 3- 16. 
																							 DOI  | 
										
|  
											SHAN Ruiqing, SHENG Yang, SU Sheng, et al. Risk analysis of power system cyber security considering identity of malicious adversaries[J]. Journal of Electric Power Science and Technology, 2022, 37 (5): 3- 16. 
																							 DOI  | 
										|
| 8 |  
											汤涌, 姚伟, 王宏志, 等. 电网仿真分析与决策的人工智能方法[J]. 中国电机工程学报, 2022, 42 (15): 5384- 5406. 
																							 DOI  | 
										
|  
											TANG Yong, YAO Wei, WANG Hongzhi, et al. Artificial intelligence techniques for power grid simulation analysis and decision making[J]. Proceedings of the CSEE, 2022, 42 (15): 5384- 5406. 
																							 DOI  | 
										|
| 9 | 周艳真, 查显煜, 兰健, 等. 基于数据增强和深度残差网络的电力系统暂态稳定预测[J]. 中国电力, 2020, 53 (1): 22- 31. | 
| ZHOU Yanzhen, ZHA Xianyu, LAN Jian, et al. Transient stability prediction of power systems based on deep residual network and data augmentation[J]. Electric Power, 2020, 53 (1): 22- 31. | |
| 10 |  
											ZHANG Y C, XU Y, ZHANG R, et al. A missing-data tolerant method for data-driven short-term voltage stability assessment of power systems[J]. IEEE Transactions on Smart Grid, 2019, 10 (5): 5663- 5674. 
																							 DOI  | 
										
| 11 |  
											HE M, VITTAL V, ZHANG J S. Online dynamic security assessment with missing pmu measurements: a data mining approach[J]. IEEE Transactions on Power Systems, 2013, 28 (2): 1969- 1977. 
																							 DOI  | 
										
| 12 | ZHANG Y C, XU Y, DONG Z Y. Robust classification model for PMU-based on-line power system DSA with missing data[J]. IET Generation, Transmission & Distribution, 2017, 11 (18): 4484- 4491. | 
| 13 |  
											ZHANG Y C, XU Y, DONG Z Y. Robust ensemble data analytics for incomplete PMU measurements-based power system stability assessment[J]. IEEE Transactions on Power Systems, 2018, 33 (1): 1124- 1126. 
																							 DOI  | 
										
| 14 |  
											谭本东, 杨军, 刘源, 等. 考虑数据缺失的电力系统暂态稳定自适应集成评估方法[J]. 电力系统自动化, 2021, 45 (23): 68- 75. 
																							 DOI  | 
										
|  
											TAN Bendong, YANG Jun, LIU Yuan, et al. Adaptive integrated assessment method for transient stability of power system considering PMU data missing[J]. Automation of Electric Power Systems, 2021, 45 (23): 68- 75. 
																							 DOI  | 
										|
| 15 |  
											REN C, XU Y, DAI B J, et al. An integrated transfer learning method for power system dynamic security assessment of unlearned faults with missing data[J]. IEEE Transactions on Power Systems, 2021, 36 (5): 4856- 4859. 
																							 DOI  | 
										
| 16 |  
											YU J J Q, LAM A Y S, HILL D J, et al. Delay aware power system synchrophasor recovery and prediction framework[J]. IEEE Transactions on Smart Grid, 2019, 10 (4): 3732- 3742. 
																							 DOI  | 
										
| 17 |  
											GAO P Z, WANG M, GHIOCEL S G, et al. Missing data recovery by exploiting low-dimensionality in power system synchrophasor measurements[J]. IEEE Transactions on Power Systems, 2016, 31 (2): 1006- 1013. 
																							 DOI  | 
										
| 18 |  
											REN C, XU Y. A fully data-driven method based on generative adversarial networks for power system dynamic security assessment with missing data[J]. IEEE Transactions on Power Systems, 2019, 34 (6): 5044- 5052. 
																							 DOI  | 
										
| 19 | 钟智, 管霖, 苏寅生, 等. 基于图注意力深度网络的电力系统暂态稳定评估[J]. 电网技术, 2021, 45 (6): 2122- 2130. | 
| ZHONG Zhi, GUAN Lin, SU Yinsheng, et al. Power system transient stability assessment based on graph attention deep network[J]. Power System Technology, 2021, 45 (6): 2122- 2130. | |
| 20 |  
											曹鹏, 刘敏. 基于改进的整数规划法结合零注入节点的PMU优化配置方法[J]. 电力系统保护与控制, 2021, 49 (16): 143- 150. 
																							 DOI  | 
										
|  
											CAO Peng, LIU Min. PMU placement method based on improved integer programming method combined with zero injection buses[J]. Power System Protection and Control, 2021, 49 (16): 143- 150. 
																							 DOI  | 
										|
| 21 | 李佳玮, 王小君, 和敬涵, 等. 基于图注意力网络的配电网故障定位方法[J]. 电网技术, 2021, 45 (6): 2113- 2121. | 
| LI Jiawei, WANG Xiaojun, HE Jinghan, et al. Distribution network fault location based on graph attention network[J]. Power System Technology, 2021, 45 (6): 2113- 2121. | |
| 22 | 朱思婷, 管霖, 黄济宇, 等. 面向稳控策略校核的并联图注意力网络稳定评估模型[J]. 电网技术, 2023, 47 (9): 3836- 3846. | 
| ZHU Siting, GUAN Lin, HUANG Jiyu, et al. Parallel graph attention network based transient stability assessment model for stability control strategy checking[J]. Power System Technology, 2023, 47 (9): 3836- 3846. | |
| 23 | 李楠, 朱嫄, 崔莹. 考虑代价敏感的AC-LSTM暂态稳定评估[J]. 电力系统保护与控制, 2022, 50 (22): 160- 169. | 
| LI Nan, ZHU Yuan, CUI Ying. AC-LSTM transient stability assessment considering cost-sensitivity[J]. Power System Protection and Control, 2022, 50 (22): 160- 169. | |
| 24 | 李保罗, 孙华东, 张恒旭, 等. 基于两阶段迁移学习的电力系统暂态稳定评估框架[J]. 电力系统自动化, 2022, 46 (17): 176- 185. | 
| LI Baoluo, SUN Huadong, ZHANG Hengxu, et al. Transient stability assessment framework of power system based on two-stage transfer learning[J]. Automation of Electric Power Systems, 2022, 46 (17): 176- 185. | |
| 25 |  
											田书欣, 李昆鹏, 魏书荣, 等. 基于同步相量测量装置的配电网安全态势感知方法[J]. 中国电机工程学报, 2021, 41 (2): 617- 632. 
																							 DOI  | 
										
|  
											TIAN Shuxin, LI Kunpeng, WEI Shurong, et al. Security situation awareness approach for distribution network based on synchronous phasor measurement unit[J]. Proceedings of the CSEE, 2021, 41 (2): 617- 632. 
																							 DOI  | 
										
| [1] | WANG Xuejun, FANG Shuiping, CHI Guangyong. Transient Stability Assessment Method for Multi-machine Power Systems Considering Dense Channels [J]. Electric Power, 2025, 58(8): 139-146. | 
| [2] | Chenhao ZHAO, Zaibin JIAO, Chenghao LI, Di ZHANG, Penghui ZHANG. Adaptive Assessment of Power System Transient Stability Based on Active Transfer Learning [J]. Electric Power, 2025, 58(1): 70-77. | 
| Viewed | ||||||
| 
										Full text | 
									
										 | 
								|||||
| 
										Abstract | 
									
										 | 
								|||||
