Electric Power ›› 2024, Vol. 57 ›› Issue (1): 175-182.DOI: 10.11930/j.issn.1004-9649.202310032
• Clean and Efficient Power Generation Technology for Carbon Peak and Carbon Neutrality • Previous Articles Next Articles
Sanmin XU1(), Gong ZHANG1(
), Fang WANG2(
), Lei PU3(
)
Received:
2023-10-11
Accepted:
2024-01-09
Online:
2024-01-23
Published:
2024-01-28
Supported by:
Sanmin XU, Gong ZHANG, Fang WANG, Lei PU. Carbon Emission Reduction Calculation Method for Pumped Storage Based on CCER Rules[J]. Electric Power, 2024, 57(1): 175-182.
试点省市 | 当地抽水蓄能电站 | 是否纳入碳市场 | ||
北京 | 十三陵 | 是 | ||
天津 | — | — | ||
上海 | — | — | ||
重庆 | 蟠龙 | 否 | ||
湖北 | 白莲河 | 否 | ||
广东 | 广蓄、梅蓄、惠蓄、阳江 | 否 | ||
深圳 | 深蓄 | 否 | ||
福建 | 仙游、厦门 | 否 | ||
四川 | 春厂坝 | 否 |
Table 1 The inclusion of pumped storage in the pilot carbon market
试点省市 | 当地抽水蓄能电站 | 是否纳入碳市场 | ||
北京 | 十三陵 | 是 | ||
天津 | — | — | ||
上海 | — | — | ||
重庆 | 蟠龙 | 否 | ||
湖北 | 白莲河 | 否 | ||
广东 | 广蓄、梅蓄、惠蓄、阳江 | 否 | ||
深圳 | 深蓄 | 否 | ||
福建 | 仙游、厦门 | 否 | ||
四川 | 春厂坝 | 否 |
区域 | 全年火电电量占比/% | 抽水时段火电电量占比/% | ||
华东 | 64.87 | 65.40 | ||
华中 | 60.45 | 59.34 | ||
华北 | 80.66 | 79.06 | ||
东北 | 69.39 | 68.41 |
Table 2 Proportion of thermal power generation in various regions of China in 2022
区域 | 全年火电电量占比/% | 抽水时段火电电量占比/% | ||
华东 | 64.87 | 65.40 | ||
华中 | 60.45 | 59.34 | ||
华北 | 80.66 | 79.06 | ||
东北 | 69.39 | 68.41 |
区域 | 电量边际排放因子/ (t·(MW·h)–1) | 容量边际排放因子/ (t·(MW·h)–1) | 组合排放因子/ (t·(MW·h)–1) | |||
华东 | 0.7921 | 0.3870 | 0.6908 | |||
华中 | 0.8587 | 0.2854 | 0.7154 | |||
华北 | 0.9419 | 0.4819 | 0.8269 | |||
东北 | 1.0826 | 0.2399 | 0.8719 |
Table 3 Regional grid baseline emission factors of the 2019 emission reduction projects in China
区域 | 电量边际排放因子/ (t·(MW·h)–1) | 容量边际排放因子/ (t·(MW·h)–1) | 组合排放因子/ (t·(MW·h)–1) | |||
华东 | 0.7921 | 0.3870 | 0.6908 | |||
华中 | 0.8587 | 0.2854 | 0.7154 | |||
华北 | 0.9419 | 0.4819 | 0.8269 | |||
东北 | 1.0826 | 0.2399 | 0.8719 |
机组类型 | 最佳供电热 效率/% | 燃料CO2排放因子/ (t·GJ–1) | 单位电量排放因子/ (t·(MW·h)–1) | |||
燃煤机组 | 41.33 | 0.0873 | 0.7605 | |||
燃气机组 | 55.05 | 0.0543 | 0.3551 | |||
燃油机组 | 52.90 | 0.0755 | 0.5138 | |||
垃圾发电 | 23.82 | 0.0733 | 1.1080 |
Table 4 CO2 emission factor per unit energy of coal-fired, gas, fuel, and garbage incineration power generation units
机组类型 | 最佳供电热 效率/% | 燃料CO2排放因子/ (t·GJ–1) | 单位电量排放因子/ (t·(MW·h)–1) | |||
燃煤机组 | 41.33 | 0.0873 | 0.7605 | |||
燃气机组 | 55.05 | 0.0543 | 0.3551 | |||
燃油机组 | 52.90 | 0.0755 | 0.5138 | |||
垃圾发电 | 23.82 | 0.0733 | 1.1080 |
项目 | 区域 | |||||||
华东 | 华中 | 华北 | 东北 | |||||
区域排放因子/ (t·(MW·h)–1) | 0.6908 | 0.7154 | 0.8269 | 0.8719 | ||||
火电排放因子/ (t·(MW·h)–1) | 0.7605 | 0.7605 | 0.7605 | 0.7605 | ||||
抽水时段 火电占比/% | 65.40 | 59.34 | 79.06 | 68.41 | ||||
典型电站 | 浙江桐柏 | 河南宝泉 | 北京十三陵 | 辽宁蒲石河 | ||||
年发电电量/ (MW·h) | 1589210.18 | 1400609.34 | 608430.96 | 1423782.9 | ||||
年抽水电量/ (MW·h) | 1936234.89 | 1742830.77 | 816689.8 | 1749016.8 | ||||
电站综合效率/% | 82.08 | 80.36 | 74.50 | 81.40 | ||||
基准线排放/t | 1097866.12 | 1001960.91 | 503111.56 | 1241431.91 | ||||
项目排放/t | 963019.34 | 786505.89 | 491035.80 | 909940.07 | ||||
年减排量/t | 134846.78 | 215455.02 | 12075.76 | 331491.84 |
Table 5 Calculated emission reduction by typical pumped storage stations in each region in 2022
项目 | 区域 | |||||||
华东 | 华中 | 华北 | 东北 | |||||
区域排放因子/ (t·(MW·h)–1) | 0.6908 | 0.7154 | 0.8269 | 0.8719 | ||||
火电排放因子/ (t·(MW·h)–1) | 0.7605 | 0.7605 | 0.7605 | 0.7605 | ||||
抽水时段 火电占比/% | 65.40 | 59.34 | 79.06 | 68.41 | ||||
典型电站 | 浙江桐柏 | 河南宝泉 | 北京十三陵 | 辽宁蒲石河 | ||||
年发电电量/ (MW·h) | 1589210.18 | 1400609.34 | 608430.96 | 1423782.9 | ||||
年抽水电量/ (MW·h) | 1936234.89 | 1742830.77 | 816689.8 | 1749016.8 | ||||
电站综合效率/% | 82.08 | 80.36 | 74.50 | 81.40 | ||||
基准线排放/t | 1097866.12 | 1001960.91 | 503111.56 | 1241431.91 | ||||
项目排放/t | 963019.34 | 786505.89 | 491035.80 | 909940.07 | ||||
年减排量/t | 134846.78 | 215455.02 | 12075.76 | 331491.84 |
典型电站 | 2022年 | 火电占比降低 5个百分点 | 火电占比降低 10个百分点 | 火电占比降低 20个百分点 | 火电占比降低 30个百分点 | 火电占比降低 40个百分点 | ||||||||||||||||||
抽水时 段火电 占比/% | CO2年减 排量/t | 抽水时 段火电 占比/% | CO2年减 排量/t | 抽水时 段火电 占比/% | CO2年减 排量/t | 抽水时 段火电 占比/% | CO2年减 排量/t | 抽水时 段火电 占比/% | CO2年减 排量/t | 抽水时 段火电 占比/% | CO2年减 排量/t | |||||||||||||
华东桐柏 | 65.40 | 134846.78 | 60.40 | 208472.12 | 55.40 | 282097.45 | 45.40 | 429348.11 | 35.40 | 576598.77 | 25.40 | 723849.44 | ||||||||||||
华中宝泉 | 59.34 | 215455.02 | 54.34 | 281726.16 | 49.34 | 347997.30 | 39.34 | 480539.58 | 29.34 | 613081.86 | 19.34 | 745624.14 | ||||||||||||
华北十三陵 | 79.06 | 12075.76 | 74.06 | 43130.39 | 69.06 | 74185.02 | 59.06 | 136294.28 | 49.06 | 198403.53 | 39.06 | 260512.79 | ||||||||||||
东北蒲石河 | 68.41 | 331491.84 | 63.41 | 397998.20 | 58.41 | 464504.56 | 48.41 | 597517.29 | 38.41 | 730530.02 | 28.41 | 863542.75 |
Table 6 Comparison of emission reduction by pumping storage under different decreasing percentages of thermal power generation
典型电站 | 2022年 | 火电占比降低 5个百分点 | 火电占比降低 10个百分点 | 火电占比降低 20个百分点 | 火电占比降低 30个百分点 | 火电占比降低 40个百分点 | ||||||||||||||||||
抽水时 段火电 占比/% | CO2年减 排量/t | 抽水时 段火电 占比/% | CO2年减 排量/t | 抽水时 段火电 占比/% | CO2年减 排量/t | 抽水时 段火电 占比/% | CO2年减 排量/t | 抽水时 段火电 占比/% | CO2年减 排量/t | 抽水时 段火电 占比/% | CO2年减 排量/t | |||||||||||||
华东桐柏 | 65.40 | 134846.78 | 60.40 | 208472.12 | 55.40 | 282097.45 | 45.40 | 429348.11 | 35.40 | 576598.77 | 25.40 | 723849.44 | ||||||||||||
华中宝泉 | 59.34 | 215455.02 | 54.34 | 281726.16 | 49.34 | 347997.30 | 39.34 | 480539.58 | 29.34 | 613081.86 | 19.34 | 745624.14 | ||||||||||||
华北十三陵 | 79.06 | 12075.76 | 74.06 | 43130.39 | 69.06 | 74185.02 | 59.06 | 136294.28 | 49.06 | 198403.53 | 39.06 | 260512.79 | ||||||||||||
东北蒲石河 | 68.41 | 331491.84 | 63.41 | 397998.20 | 58.41 | 464504.56 | 48.41 | 597517.29 | 38.41 | 730530.02 | 28.41 | 863542.75 |
1 | 张彬. “双碳” 目标下水电未来发展思路浅析[J]. 中国电业, 2021, (12): 78- 80. |
2 | 韩冬, 赵增海, 严秉忠, 等. 2021年中国抽水蓄能发展现状与展望[J]. 水力发电, 2022, 48 (5): 1- 4, 104. |
HAN Dong, ZHAO Zenghai, YAN Bingzhong, et al. Status and prospect of China's pumped storage development in 2021[J]. Water Power, 2022, 48 (5): 1- 4, 104. | |
3 | 陈同法, 孙旭伟, 殷苗苗, 等. 抽水蓄能企业参与碳市场探讨[J]. 资源节约与环保, 2022, (9): 117- 120. |
4 | 倪晋兵, 张云飞, 施浩波, 等. 基于时序生产模拟的抽水蓄能促进新能源消纳作用量化研究[J]. 电网技术, 2023, 47 (7): 2799- 2809. |
NI Jinbing, ZHANG Yunfei, SHI Haobo, et al. Pumped storage quantification in promoting new energy consumption based on time series production simulation[J]. Power System Technology, 2023, 47 (7): 2799- 2809. | |
5 | 张云飞, 张弓, 徐三敏, 等. 抽水蓄能联合新能源替代火电参与电力电量平衡能力研究[J]. 水电与抽水蓄能, 2022, 8 (6): 26- 31. |
ZHANG Yunfei, ZHANG Gong, XU Sanmin, et al. Study on the ability of pumped storage combined with new energy to replace thermal power to participate in power balance[J]. Hydropower and Pumped Storage, 2022, 8 (6): 26- 31. | |
6 | 王美琪. 风电—抽蓄联合运营模式下的收益分配方法研究[D]. 吉林: 东北电力大学, 2023. |
WANG Meiqi. Research on the income distribution method under the combined operation mode of wind power and pumping storage[D]. Jilin: Northeast Dianli University, 2023. | |
7 | HOU T T, DING H, LIU J Q, et al. Sizing pumped hydro storage plant considering environment benefit contribution in power system with wind power integration[C]//2019 IEEE Sustainable Power and Energy Conference (iSPEC). Beijing, China. IEEE, 2019: 831–836. |
8 |
YANG T M, WANG Y H, YANG B, et al. Optimal scheduling of pumped storage in power system with large-scale photovoltaic based on carbon emissions trading[J]. IOP Conference Series:Earth and Environmental Science, 2021, 701 (1): 012048.
DOI |
9 | 李长健. 抽水蓄能电站减碳效益研究[J]. 水电与抽水蓄能, 2021, 7 (6): 45- 48, 80. |
LI Changjian. Study on carbon reduction benefit of pumped storage power station[J]. Hydropower and Pumped Storage, 2021, 7 (6): 45- 48, 80. | |
10 | 许一洲, 刘皓明, 潘方圆, 等. 基于排放因子法的抽水蓄能碳减排量化方法研究[J]. 电力需求侧管理, 2023, 25 (4): 48- 54. |
XU Yizhou, LIU Haoming, PAN Fangyuan, et al. Research on carbon emission reduction for pumped storage based on emission factor method[J]. Power Demand Side Management, 2023, 25 (4): 48- 54. | |
11 | 庞军. 发挥市场机制协同作用 推进我国碳市场建设[J]. 可持续发展经济导刊, 2022, (8): 12- 15. |
PANG Jun. Promoting China's carbon market construction through the effect of market mechanism[J]. China Sustainability Tribune, 2022, (8): 12- 15. | |
12 | 张宁, 庞军. 全国碳市场引入CCER交易及抵销机制的经济影响研究[J]. 气候变化研究进展, 2022, 18 (5): 622- 636. |
ZHANG Ning, PANG Jun. The economic impacts of introducing CCER trading and offset mechanism into the national carbon market of China[J]. Climate Change Research, 2022, 18 (5): 622- 636. | |
13 | 孙文娟, 张胜军, 孙海萍. 试点碳市场发展现状及对全国碳市场的启示[J]. 国际石油经济, 2021, 29 (7): 1- 8. |
SUN Wenjuan, ZHANG Shengjun, SUN Haiping. Development status of pilot carbon markets and its enlightenments to national carbon market[J]. International Petroleum Economics, 2021, 29 (7): 1- 8. | |
14 | 北京市人民政府. 关于调整《北京市碳排放权交易管理办法(试行)》有关重点排放单位管控范围的通知[EB/OL]. (2015-12-16)[2023-09-25].https://www.beijing.gov.cn/zhengce/zhengcefagui/201905/t20190522_58814.html. |
15 | 生态环境部. 生态环境部公开征集温室气体自愿减排项目方法学建议[J]. 化工时刊, 2023, 37(2): 58. |
16 | 朱灿元, 杨超, 李舒涛, 等. 考虑清洁能源与储能的分布式数据中心低碳调度策略[J]. 智慧电力, 2023, 51 (2): 16- 23. |
ZHU Canyuan, YANG Chao, LI Shutao, et al. Low-carbon scheduling strategy for distributed data centers considering clean energy and energy storage[J]. Smart Power, 2023, 51 (2): 16- 23. | |
17 | 禹海峰, 黄婧杰, 蒋诗谣, 等. 计及储能使用年寿命的风电场整体性储能配置[J]. 电力科学与技术学报, 2022, 37 (4): 152- 160. |
YU Haifeng, HUANG Jingjie, JIANG Shiyao, et al. The overall energy storage configuration of wind farms considering the service life of electric energy storage[J]. Journal of Electric Power Science and Technology, 2022, 37 (4): 152- 160. | |
18 | 但扬清, 王蕾, 郑伟民, 等. 高比例可再生能源接入背景下电网承载能力鲁棒提升策略[J]. 中国电力, 2023, 56 (9): 104- 111. |
DAN Yangqing, WANG Lei, ZHENG Weimin, et al. Robust improvement strategy for power grid hosting capacity with integration of high proportion of renewable energy[J]. Electric Power, 2023, 56 (9): 104- 111. | |
19 | 任大伟, 侯金鸣, 肖晋宇, 等. 支撑双碳目标的新型储能发展潜力及路径研究[J]. 中国电力, 2023, 56 (8): 17- 25. |
REN Dawei, HOU Jinming, XIAO Jinyu, et al. Research on development potential and path of new energy storage supporting carbon peak and carbon neutrality[J]. Electric Power, 2023, 56 (8): 17- 25. | |
20 | 文劲宇, 周博, 魏利屾. 中国未来电力系统储电网初探[J]. 电力系统保护与控制, 2022, 50 (7): 1- 10. |
WEN Jinyu, ZHOU Bo, WEI Lishen. Preliminary study on an energy storage grid for future power system in China[J]. Power System Protection and Control, 2022, 50 (7): 1- 10. | |
21 | 董烁. 企业核证自愿减排量(CCER)碳排放权价值评估[D]. 青岛: 青岛理工大学, 2022. |
DONG Shuo. Certified voluntary emission reduction (CCER) carbon emissions by enterprises valuation[D]. Qingdao: Qingdao Tehcnology University, 2022. | |
22 | 刘昱良, 李姚旺, 周春雷, 等. 电力系统碳排放计量与分析方法综述[J/OL]. 中国电机工程学报: 1–16[2023-10-28]. https://doi.org/10.13334/j.0258-8013.pcsee.223452. |
LIU Yuliang, LI Yaowang, ZHOU Chunlei, et al. Overview of carbon measurement and analysis methods in power systems[J/OL]. Proceedings of the CSEE: 1–16[2023-10-28]. https://doi.org/10.13334/j.0258-8013.pcsee.223452. | |
23 | 别佩, 林少华, 王宁, 等. 基于电力潮流追踪与绿色电力交易的企业用电侧碳排放因子核算[J]. 南方电网技术, 2023, 17 (6): 34- 43. |
BIE Pei, LIN Shaohua, WANG Ning, et al. Calculation of carbon emission factors on the corporate electricity consumption side based on power flow tracing and green power trading[J]. Southern Power System Technology, 2023, 17 (6): 34- 43. | |
24 | 生态环境部. 2019年度减排项目中国区域电网基准线排放因子[EB/OL]. (2020-12-29)[2023-09-25]. https://www.mee.gov.cn/ywgz/ydqhbh/wsqtkz/202012/t20201229_815386.shtml. |
25 | 国家发展改革委, 国家能源局. “十四五”现代能源体系规划[EB/OL]. (2022-01-29)[2023-09-25].https://www.ndrc.gov.cn/xwdt/tzgg/202203/t20220322_1320017.html. |
26 |
舒印彪, 张丽英, 张运洲, 等. 我国电力碳达峰、碳中和路径研究[J]. 中国工程科学, 2021, 23 (6): 1- 14.
DOI |
SHU Yinbiao, ZHANG Liying, ZHANG Yunzhou, et al. Carbon peak and carbon neutrality path for China's power industry[J]. Strategic Study of CAE, 2021, 23 (6): 1- 14.
DOI |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||