Electric Power ›› 2024, Vol. 57 ›› Issue (10): 208-217.DOI: 10.11930/j.issn.1004-9649.202402020
• Power System • Previous Articles Next Articles
Jianing BAI1(), Lin GUI1(
), Miao LIU2(
), Yanjun LI3, Chenguang GAO3, Tianzhi CAO2, Yian YAN2
Received:
2024-02-04
Accepted:
2024-05-04
Online:
2024-10-23
Published:
2024-10-28
Supported by:
Jianing BAI, Lin GUI, Miao LIU, Yanjun LI, Chenguang GAO, Tianzhi CAO, Yian YAN. Performance Analysis of New Main Protection Scheme for Rotor Winding of Variable Speed Pumped Storage Units[J]. Electric Power, 2024, 57(10): 208-217.
参数 | 定子 | 转子 | ||
槽数 | 54 | 45 | ||
绕组形式 | 双层叠绕组 | 双层叠绕组 | ||
极对数 | 3 | 3 | ||
并联支路数 | 3 | 1 | ||
每分支串联线圈数 | 6 | 15 | ||
节距 | 8 | 7 | ||
额定相电流/A | 15.79 | 5.65 | ||
额定功率/kW | 12 | / | ||
额定电压/V | 380 | / |
Table 1 Basic parameters of the dynamic simulation electrical machine
参数 | 定子 | 转子 | ||
槽数 | 54 | 45 | ||
绕组形式 | 双层叠绕组 | 双层叠绕组 | ||
极对数 | 3 | 3 | ||
并联支路数 | 3 | 1 | ||
每分支串联线圈数 | 6 | 15 | ||
节距 | 8 | 7 | ||
额定相电流/A | 15.79 | 5.65 | ||
额定功率/kW | 12 | / | ||
额定电压/V | 380 | / |
保护定值 | 数值 | |
裂相横差电流判据的启动电流定值(p.u.) | 0.20 | |
裂相横差电流判据的比率制动斜率 | 0.05 | |
裂相横差电流判据的延时定值/s | 0.10 | |
零序横差电流判据的启动电流定值/A | 0.10 | |
零序横差电流判据的比率制动斜率 | 0.20 | |
零序横差电流判据的延时定值/s | 0.10 |
Table 2 Setting value of the new main protection scheme on the dynamic simulation electrical machine
保护定值 | 数值 | |
裂相横差电流判据的启动电流定值(p.u.) | 0.20 | |
裂相横差电流判据的比率制动斜率 | 0.05 | |
裂相横差电流判据的延时定值/s | 0.10 | |
零序横差电流判据的启动电流定值/A | 0.10 | |
零序横差电流判据的比率制动斜率 | 0.20 | |
零序横差电流判据的延时定值/s | 0.10 |
故障类型 | 同槽故障 | 端部故障 | ||||||||||||||
同相同分支 匝间短路 | 同相同分支 匝间短路 | 相间短路(两短路点间 相隔匝数) | ||||||||||||||
1匝 | 14匝 | 1匝 | 2匝 | 相隔0匝 | 相隔1匝 | 相隔13匝 | 相隔15匝 | |||||||||
不能动作的 故障数 | 15 | 1 | 9 | 1 | 2 | 5 | 1 | 1 |
Table 3 Number and distribution of faults that the new main protection scheme cannot operate when rotor winding internal short circuit faults of the dynamic simulation electrical machine occur
故障类型 | 同槽故障 | 端部故障 | ||||||||||||||
同相同分支 匝间短路 | 同相同分支 匝间短路 | 相间短路(两短路点间 相隔匝数) | ||||||||||||||
1匝 | 14匝 | 1匝 | 2匝 | 相隔0匝 | 相隔1匝 | 相隔13匝 | 相隔15匝 | |||||||||
不能动作的 故障数 | 15 | 1 | 9 | 1 | 2 | 5 | 1 | 1 |
故障类型 | 同槽故障 | 端部故障 | ||||||||||
同相同分支 匝间短路 | 相间 短路 | 同相同分支 匝间短路 | 相间 短路 | |||||||||
1匝 | 3匝 | 1匝 | 2匝 | |||||||||
不能动作的故障数 | 15 | 15 | 4 | 9 | 15 | 90 |
Table 4 Number and distribution of faults that the rotor overcurrent protection cannot operate when rotor winding internal short circuit faults of the dynamic simulation electrical machine occur
故障类型 | 同槽故障 | 端部故障 | ||||||||||
同相同分支 匝间短路 | 相间 短路 | 同相同分支 匝间短路 | 相间 短路 | |||||||||
1匝 | 3匝 | 1匝 | 2匝 | |||||||||
不能动作的故障数 | 15 | 15 | 4 | 9 | 15 | 90 |
Fig.4 Time domain waveforms of rotor phase currents and stator branch currents when the 2 nd to 15 th turns of the rotor U-phase winding are short circuited
Fig.5 Total effective harmonic values of stator transverse differential currents when the 2 nd to 15 th turns of the rotor U-phase winding are short circuited
Fig.8 Time domain waveforms of rotor phase currents and stator branch currents when the 15 th turn of the U-phase to the 2 nd turn of the W-phase of the rotor are short circuited
Fig.9 Total effective harmonic values of stator transverse differential currents when the 15 th turn of the U-phase to the 2 nd turn of the W-phase of the rotor are short circuited
Fig.10 Over-limit flags of the new main protection scheme when the 15 th turn of the U-phase to the 2 nd turn of the W-phase of the rotor are short circuited
Fig.11 Effective harmonic values of rotor phase currents when the 15 th turn of the U-phase to the 2 nd turn of the W-phase of the rotor are short circuited
1 | 唐西胜, 苗福丰, 齐智平, 等. 风力发电的调频技术研究综述[J]. 中国电机工程学报, 2014, 34 (25): 4304- 4314. |
TANG Xisheng, MIAO Fufeng, QI Zhiping, et al. Survey on frequency control of wind power[J]. Proceedings of the CSEE, 2014, 34 (25): 4304- 4314. | |
2 | 游文霞, 刘斌, 李世春, 等. 风电并网下的抽水蓄能鲁棒最优调频控制策略[J]. 中国电力, 2023, 56 (5): 32- 40. |
YOU Wenxia, LIU Bin, LI Shichun, et al. Robust optimal frequency regulation control strategy for pumped storage in grid-connected wind power systems[J]. Electric Power, 2023, 56 (5): 32- 40. | |
3 | 刘健俊, 郑小康, 钱昌燕, 等. 可变速抽水蓄能发电电动机的设计[C]//抽水蓄能电站工程建设文集. 北京: 中国电力出版社, 2014: 228–233. |
4 | 龚国仙, 吕静亮, 姜新建, 等. 参与一次调频的双馈式可变速抽水蓄能机组运行控制[J]. 储能科学与技术, 2020, 9 (6): 1878- 1884. |
GONG Guoxian, LV Jingliang, JIANG Xinjian, et al. Operation control of doubly fed adjustable speed pumped storage unit for primary frequency modulation[J]. Energy Storage Science and Technology, 2020, 9 (6): 1878- 1884. | |
5 |
喻冉, 杨武星, 孙文东, 等. 抽水蓄能变速机组抽水和发电工况运行范围简析[J]. 水电与抽水蓄能, 2021, 7 (6): 87- 90.
DOI |
YU Ran, YANG Wuxing, SUN Wendong, et al. Brief analysis on operation range of pumped storage variable speed unit under pumping and power generation conditions[J]. Hydropower and Pumped Storage, 2021, 7 (6): 87- 90.
DOI |
|
6 | 徐三敏, 张弓, 王放, 等. 基于CCER规则的抽水蓄能碳减排计算方法[J]. 中国电力, 2024, 57 (1): 175- 182. |
XU Sanmin, ZHANG Gong, WANG Fang, et al. Carbon emission reduction calculation method for pumped storage based on CCER rules[J]. Electric Power, 2024, 57 (1): 175- 182. | |
7 | 尹项根, 乔健, 王义凯, 等. 基于内部故障仿真的可变速抽水蓄能发电电动机定子侧主保护优化配置研究[J]. 电力系统保护与控制, 2022, 50 (13): 1- 10. |
YIN Xianggen, QIAO Jian, WANG Yikai, et al. Optimal configuration of main protection for a variable speed pumped storage power generator based on internal fault simulation[J]. Power System Protection and Control, 2022, 50 (13): 1- 10. | |
8 | 桂林, 陈俊, 姜树德, 等. 交流励磁发电电动机内部故障分析及主保护设计新进展[J]. 水电与抽水蓄能, 2021, 7 (4): 26- 33. |
GUI Lin, CHEN Jun, JIANG Shude, et al. New development of internal fault analysis and main protection design of AC excited generator-motor[J]. Hydropower and Pumped Storage, 2021, 7 (4): 26- 33. | |
9 | 桂林, 陈俊, 王光, 等. 柔性光学电流互感器在水轮发电机保护及监测上的应用探索[J]. 水电与抽水蓄能, 2020, 6 (3): 1- 6, 21. |
GUI Lin, CHEN Jun, WANG Guang, et al. Discussion on the application of flexible optical TA in the protection and monitoring of hydro-generator[J]. Hydropower and Pumped Storage, 2020, 6 (3): 1- 6, 21. | |
10 | 牛化敏, 桂林, 骆林, 等. 基于多回路理论的交流励磁电机转子绕组内部故障仿真与实验研究[J]. 水电与抽水蓄能, 2021, 7 (4): 34- 42. |
NIU Huamin, GUI Lin, LUO Lin, et al. Simulation and experimental research on internal faults of rotor winding in AC excitation generator-motor based on the multi-loop theory[J]. Hydropower and Pumped Storage, 2021, 7 (4): 34- 42. | |
11 | LI J Q, HE L, WANG D. Rotor winding inter-turn fault analysis of doubly-fed induction generator based on negative sequence component[C]//2013 International Conference on Electrical Machines and Systems (ICEMS). Busan. IEEE, 2013: 785–788. |
12 |
ZAREI M E, PLATERO C A, NICOLAS C V, et al. Novel differential protection technique for doubly fed induction machines[J]. IEEE Transactions on Industry Applications, 2019, 55 (4): 3697- 3706.
DOI |
13 | ZHAO S W, CHEN Y, REHMAN A U, et al. Detection of interturn short-circuit faults in DFIGs based on external leakage flux sensing and the VMD-RCMDE analytical method[J]. IEEE Transactions on Instrumentation Measurement, 2022, 71, 3186061. |
14 |
SARMA N, TUOHY P M, MOHAMMED A, et al. Rotor electrical fault detection in DFIGs using wide-band controller signals[J]. IEEE Transactions on Sustainable Energy, 2021, 12 (1): 623- 633.
DOI |
15 | SABIR H, OUASSAID M, NGOTE N. Rotor winding failure diagnosis in Wind Turbine Based on DFIG using the PSD-TSA method[C]//2019 8th International Conference on Systems and Control (ICSC). Marrakesh, Morocco. IEEE, 2019: 366–371. |
16 |
CAO Z, DU X J. An intelligent optimization-based particle filter for fault diagnosis[J]. IEEE Access, 2021, 9, 87839- 87848.
DOI |
17 |
BATTULGA B, SHAIKH M F, LEE S B, et al. Inverter-embedded detection of rotor winding faults in doubly fed induction generators for wind energy applications[J]. IEEE Transactions on Energy Conversion, 2023, 38 (1): 646- 652.
DOI |
18 | 牛化敏, 桂林, 孙宇光, 等. 基于多回路理论的交流励磁电机定子绕组内部故障仿真与实验研究[J]. 中国电机工程学报, 2019, 39 (12): 3676- 3685. |
NIU Huamin, GUI Lin, SUN Yuguang, et al. Simulation and experimental research on stator winding internal faults of AC excitation machine based on multi-loop theory[J]. Proceedings of the CSEE, 2019, 39 (12): 3676- 3685. | |
19 | 王维俭. 电气主设备继电保护原理与应用[M]. 2版. 北京: 中国电力出版社, 2002: 223–245. |
20 |
陈俊, 刘梓洪, 王明溪, 等. 不依赖注入式原理的定子单相接地故障定位方法[J]. 电力系统自动化, 2013, 37 (4): 104- 107.
DOI |
CHEN Jun, LIU Zihong, WANG Mingxi, et al. Location method for stator single-phase ground fault independent of injection type principle[J]. Automation of Electric Power Systems, 2013, 37 (4): 104- 107.
DOI |
|
21 | 乔健, 尹项根, 王义凯, 等. 变速抽蓄机组转子绕组接地故障保护及定位方法[J]. 电力自动化设备, 2023, 43 (3): 217- 224. |
QIAO Jian, YIN Xianggen, WANG Yikai, et al. Protection and location method of rotor winding grounding fault for variable speed pumping storage unit[J]. Electric Power Automation Equipment, 2023, 43 (3): 217- 224. | |
22 | 刘卫东. 信号与系统分析基础[M]. 北京: 清华大学出版社, 2008: 57–60. |
23 | 高景德, 王祥珩. 交流电机的多回路理论[J]. 清华大学学报(自然科学版), 1987, 27 (1): 1- 8. |
GAO Jingde, WANG Xiangheng. The multi-loop theory of alternating current machine[J]. Journal of Tsinghua University (Science and Technology), 1987, 27 (1): 1- 8. | |
24 | 高景德, 王祥珩, 李发海. 交流电机及其系统的分析[M]. 2版. 北京: 清华大学出版社, 2005: 2–36. |
25 |
孙宇光, 王祥珩, 桂林, 等. 同步发电机励磁绕组匝间短路的仿真研究[J]. 电工电能新技术, 2008, 27 (2): 5- 10.
DOI |
SUN Yuguang, WANG Xiangheng, GUI Lin, et al. Simulation research on inter-turn short circuits of field windings in synchronous machines[J]. Advanced Technology of Electrical Engineering and Energy, 2008, 27 (2): 5- 10.
DOI |
|
26 | 王祥珩, 孙宇光, 桂林, 等. 发电机内部故障分析软件的理论基础: 多回路分析法[J]. 水电自动化与大坝监测, 2003, (4): 72- 78. |
WANG Xiangheng, SUN Yuguang, GUI Lin, et al. A theoretical basis for generator internal fault analysis software—multi-loop analysis method[J]. Dam Observation and Geotechnical Tests, 2003, (4): 72- 78. |
[1] | CHEN Jun, YE Hong, LI Huazhong, LI Jianchun, CHEN Xiaogang, WANG Kai. Internal Short Circuit Protection for Rotor Winding of Variable Speed Pumped-Storage Generator-Motor [J]. Electric Power, 2021, 54(12): 121-127,136. |
[2] | WANG Yuqiang, BAI Feng, MENG Lei, WANG Zhongquan. Analysis and Discussion on an Action of Optical Fiber Differential Protection [J]. Electric Power, 2015, 48(5): 51-55. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||