Electric Power ›› 2024, Vol. 57 ›› Issue (8): 117-129.DOI: 10.11930/j.issn.1004-9649.202309007
• Power System • Previous Articles Next Articles
					
													Hanmei PENG1(
), Tang YIN1(
), Qianhao XIAO1(
), Mao TAN1,2(
), Yongxin SU1,2(
), Hui LI1,2(
)
												  
						
						
						
					
				
Received:2023-09-04
															
							
															
							
																	Accepted:2023-12-03
															
							
																	Online:2024-08-23
															
							
							
																	Published:2024-08-28
															
							
						Supported by:Hanmei PENG, Tang YIN, Qianhao XIAO, Mao TAN, Yongxin SU, Hui LI. Coordinated Planning of Medium-Voltage and Low-Voltage Flexible Interconnection for Distribution Networks with High Proportion of Distributed Generation[J]. Electric Power, 2024, 57(8): 117-129.
| 台区 编号  | 交流 负荷/ kW  | 直流 负荷/ kW  | 交流 负荷 类型  | 变压器 额定容量/ kV·A  | 光伏有 功容量/ kW  | 台区 编号  | 交流 负荷/ kW  | 直流 负荷/ kW  | 交流 负荷 类型  | 变压器 额定容量/ kV·A  | 光伏有 功容量/ kW  | 台区 编号  | 交流 负荷/ kW  | 直流 负荷/ kW  | 交流 负荷 类型  | 变压器 额定容量/ kV·A  | 光伏有 功容量/ kW  | |||||||||||||||||
| 2 | 140 | 0 | E | 160 | 0 | 13 | 150 | 0 | D | 160 | 110 | 24 | 180 | 30 | D | 200 | 150 | |||||||||||||||||
| 3 | 130 | 0 | E | 160 | 0 | 14 | 150 | 0 | D | 160 | 40 | 25 | 110 | 0 | B | 160 | 0 | |||||||||||||||||
| 4 | 155 | 0 | D | 160 | 120 | 15 | 140 | 30 | C | 200 | 0 | 26 | 210 | 0 | E | 315 | 80 | |||||||||||||||||
| 5 | 160 | 30 | C | 200 | 0 | 16 | 200 | 0 | D | 200 | 40 | 27 | 140 | 30 | B | 160 | 30 | |||||||||||||||||
| 6 | 300 | 0 | D | 315 | 130 | 17 | 140 | 0 | B | 160 | 40 | 28 | 140 | 0 | A | 200 | 30 | |||||||||||||||||
| 7 | 180 | 30 | E | 200 | 0 | 18 | 150 | 0 | D | 160 | 120 | 29 | 130 | 0 | E | 160 | 0 | |||||||||||||||||
| 8 | 100 | 0 | B | 160 | 120 | 19 | 135 | 0 | E | 160 | 0 | 30 | 140 | 0 | E | 160 | 0 | |||||||||||||||||
| 9 | 130 | 30 | C | 160 | 0 | 20 | 140 | 0 | D | 160 | 30 | 31 | 180 | 0 | C | 200 | 40 | |||||||||||||||||
| 10 | 125 | 0 | E | 160 | 50 | 21 | 130 | 30 | B | 200 | 0 | 32 | 150 | 0 | D | 160 | 120 | |||||||||||||||||
| 11 | 290 | 0 | E | 315 | 0 | 22 | 140 | 0 | E | 160 | 30 | 33 | 130 | 0 | B | 200 | 0 | |||||||||||||||||
| 12 | 100 | 0 | A | 160 | 0 | 23 | 120 | 0 | E | 160 | 30 | 
Table 1 Parameters of low-voltage station area
| 台区 编号  | 交流 负荷/ kW  | 直流 负荷/ kW  | 交流 负荷 类型  | 变压器 额定容量/ kV·A  | 光伏有 功容量/ kW  | 台区 编号  | 交流 负荷/ kW  | 直流 负荷/ kW  | 交流 负荷 类型  | 变压器 额定容量/ kV·A  | 光伏有 功容量/ kW  | 台区 编号  | 交流 负荷/ kW  | 直流 负荷/ kW  | 交流 负荷 类型  | 变压器 额定容量/ kV·A  | 光伏有 功容量/ kW  | |||||||||||||||||
| 2 | 140 | 0 | E | 160 | 0 | 13 | 150 | 0 | D | 160 | 110 | 24 | 180 | 30 | D | 200 | 150 | |||||||||||||||||
| 3 | 130 | 0 | E | 160 | 0 | 14 | 150 | 0 | D | 160 | 40 | 25 | 110 | 0 | B | 160 | 0 | |||||||||||||||||
| 4 | 155 | 0 | D | 160 | 120 | 15 | 140 | 30 | C | 200 | 0 | 26 | 210 | 0 | E | 315 | 80 | |||||||||||||||||
| 5 | 160 | 30 | C | 200 | 0 | 16 | 200 | 0 | D | 200 | 40 | 27 | 140 | 30 | B | 160 | 30 | |||||||||||||||||
| 6 | 300 | 0 | D | 315 | 130 | 17 | 140 | 0 | B | 160 | 40 | 28 | 140 | 0 | A | 200 | 30 | |||||||||||||||||
| 7 | 180 | 30 | E | 200 | 0 | 18 | 150 | 0 | D | 160 | 120 | 29 | 130 | 0 | E | 160 | 0 | |||||||||||||||||
| 8 | 100 | 0 | B | 160 | 120 | 19 | 135 | 0 | E | 160 | 0 | 30 | 140 | 0 | E | 160 | 0 | |||||||||||||||||
| 9 | 130 | 30 | C | 160 | 0 | 20 | 140 | 0 | D | 160 | 30 | 31 | 180 | 0 | C | 200 | 40 | |||||||||||||||||
| 10 | 125 | 0 | E | 160 | 50 | 21 | 130 | 30 | B | 200 | 0 | 32 | 150 | 0 | D | 160 | 120 | |||||||||||||||||
| 11 | 290 | 0 | E | 315 | 0 | 22 | 140 | 0 | E | 160 | 30 | 33 | 130 | 0 | B | 200 | 0 | |||||||||||||||||
| 12 | 100 | 0 | A | 160 | 0 | 23 | 120 | 0 | E | 160 | 30 | 
| 参数 | 数值 | 参数 | 数值 | 参数 | 数值 | |||||
| 中压B2B VSC贴现率 | 0.04 | 低压VSC贴现率 | 0.04 | 直流联络线贴现率 | 0.04 | |||||
| 中压B2B VSC经济使用年限/年 | 20 | 低压VSC经济使用年限/年 | 20 | 直流联络线经济使用年限/年 | 20 | |||||
| 中压B2B VSC单位容量投资成本/ (元·(kV·A)–1)  | 600 | 低压VSC单位容量投资成本/ (元·(kV·A)–1)  | 300 | 直流联络线单位长度的等值投资成本/ (元·km–1)  | ||||||
| 中压B2B VSC单位容量年运行维护费用/(元·(kV·A)–1) | 10 | 低压VSC单位容量年运行维护费用/ (元·(kV·A)–1)  | 5.5 | 直流联络线最大传输有功功率/kW | 150 | |||||
| 中压B2B VSC最大可安装容量/(kV·A) | 800 | 低压VSC最大可安装容量/(kV·A) | 150 | 直流联络线损耗系数 | 0.01 | |||||
| 中压B2B VSC单位安装容量/(kV·A) | 50 | 低压VSC单位安装容量/(kV·A) | 10 | 中、低压VSC损耗系数 | 0.02 | |||||
| 平时段[06:00—10:00、14:00— 16:00、20:00—22:00]购电价格/ (元·(kW·h)–1)  | 谷时段[00:00—06:00、22:00— 24:00]购电价格/(元·(kW·h)–1)  | 峰时段[10:00—14:00、16:00—20:00] 购电价格/(元·(kW·h)–1)  | 
Table 2 Parameters setting
| 参数 | 数值 | 参数 | 数值 | 参数 | 数值 | |||||
| 中压B2B VSC贴现率 | 0.04 | 低压VSC贴现率 | 0.04 | 直流联络线贴现率 | 0.04 | |||||
| 中压B2B VSC经济使用年限/年 | 20 | 低压VSC经济使用年限/年 | 20 | 直流联络线经济使用年限/年 | 20 | |||||
| 中压B2B VSC单位容量投资成本/ (元·(kV·A)–1)  | 600 | 低压VSC单位容量投资成本/ (元·(kV·A)–1)  | 300 | 直流联络线单位长度的等值投资成本/ (元·km–1)  | ||||||
| 中压B2B VSC单位容量年运行维护费用/(元·(kV·A)–1) | 10 | 低压VSC单位容量年运行维护费用/ (元·(kV·A)–1)  | 5.5 | 直流联络线最大传输有功功率/kW | 150 | |||||
| 中压B2B VSC最大可安装容量/(kV·A) | 800 | 低压VSC最大可安装容量/(kV·A) | 150 | 直流联络线损耗系数 | 0.01 | |||||
| 中压B2B VSC单位安装容量/(kV·A) | 50 | 低压VSC单位安装容量/(kV·A) | 10 | 中、低压VSC损耗系数 | 0.02 | |||||
| 平时段[06:00—10:00、14:00— 16:00、20:00—22:00]购电价格/ (元·(kW·h)–1)  | 谷时段[00:00—06:00、22:00— 24:00]购电价格/(元·(kW·h)–1)  | 峰时段[10:00—14:00、16:00—20:00] 购电价格/(元·(kW·h)–1)  | 
| 台区 编号  | SVSCLI/ kV·A  | β(t) | 台区 编号  | SVSCLI/ kV·A  | β(t) | 台区 编号  | SVSCLI/ kV·A  | β(t) | ||||||||
| 3 | 80 | 0.45 | 14 | 30 | 0.45 | 23 | 80 | 0.39 | ||||||||
| 4 | 10 | 0.46 | 15 | 40 | 0.58 | 26 | 60 | 0.45 | ||||||||
| 5 | 100 | 0.45 | 16 | 90 | 0.45 | 27 | 120 | 0.45 | ||||||||
| 6 | 150 | 0.45 | 17 | 90 | 0.46 | 28 | 20 | 0.56 | ||||||||
| 8 | 50 | 0.47 | 18 | 70 | 0.46 | 31 | 150 | 0.45 | ||||||||
| 9 | 120 | 0.45 | 20 | 10 | 0.45 | 32 | 70 | 0.45 | ||||||||
| 10 | 100 | 0.46 | 21 | 20 | 0.60 | 33 | 90 | 0.46 | ||||||||
| 13 | 80 | 0.45 | 22 | 30 | 0.46 | 
Table 3 The low-voltage VSC installation capacity and transformer load rate in substation areas
| 台区 编号  | SVSCLI/ kV·A  | β(t) | 台区 编号  | SVSCLI/ kV·A  | β(t) | 台区 编号  | SVSCLI/ kV·A  | β(t) | ||||||||
| 3 | 80 | 0.45 | 14 | 30 | 0.45 | 23 | 80 | 0.39 | ||||||||
| 4 | 10 | 0.46 | 15 | 40 | 0.58 | 26 | 60 | 0.45 | ||||||||
| 5 | 100 | 0.45 | 16 | 90 | 0.45 | 27 | 120 | 0.45 | ||||||||
| 6 | 150 | 0.45 | 17 | 90 | 0.46 | 28 | 20 | 0.56 | ||||||||
| 8 | 50 | 0.47 | 18 | 70 | 0.46 | 31 | 150 | 0.45 | ||||||||
| 9 | 120 | 0.45 | 20 | 10 | 0.45 | 32 | 70 | 0.45 | ||||||||
| 10 | 100 | 0.46 | 21 | 20 | 0.60 | 33 | 90 | 0.46 | ||||||||
| 13 | 80 | 0.45 | 22 | 30 | 0.46 | 
| 方案 | 中压柔性互联规划结果 | 台区互联组合集合规划结果 | FFIDL/ 万元  | DVLR | FFIDM/ 万元  | Fbuy/ 万元  | 网损/ 万元  | RAL/ %  | RAM/ %  | |||||||||
| 1 | 3.94 | 277.18 | 704.41 | 54.53 | 79.81 | 93.38 | ||||||||||||
| 2 | TS1 (500 kV·A)、TS3 (100 kV·A)、TS4 (100 kV·A)  | 3.94 | 257.51 | 3.97 | 642.65 | 26.33 | 83.83 | 96.10 | ||||||||||
| 3 | {(3,24)、(4,5)、(5,6)、(7,8)、(8,9)、(8,29)、(13,31)、(14,15)、(18,33)、(20,21)、(24,25)、(26,27)、(31,32)} | 9.92 | 82.02 | 638.87 | 45.20 | 96.39 | 94.23 | |||||||||||
| 4 | TS1(700 kV·A)、TS3(200 kV·A) | {(3,24)、(4,5)、(5,6)、(8,9)、(13,31)、(14,15)、(17,18)、(18,33)、(20,21)、(23,24)、(26,27)、(31,32)} | 5.72 | 48.26 | 4.87 | 563.85 | 20.29 | 99.75 | 99.98 | 
Table 4 The planning results with 4 different planning schemes
| 方案 | 中压柔性互联规划结果 | 台区互联组合集合规划结果 | FFIDL/ 万元  | DVLR | FFIDM/ 万元  | Fbuy/ 万元  | 网损/ 万元  | RAL/ %  | RAM/ %  | |||||||||
| 1 | 3.94 | 277.18 | 704.41 | 54.53 | 79.81 | 93.38 | ||||||||||||
| 2 | TS1 (500 kV·A)、TS3 (100 kV·A)、TS4 (100 kV·A)  | 3.94 | 257.51 | 3.97 | 642.65 | 26.33 | 83.83 | 96.10 | ||||||||||
| 3 | {(3,24)、(4,5)、(5,6)、(7,8)、(8,9)、(8,29)、(13,31)、(14,15)、(18,33)、(20,21)、(24,25)、(26,27)、(31,32)} | 9.92 | 82.02 | 638.87 | 45.20 | 96.39 | 94.23 | |||||||||||
| 4 | TS1(700 kV·A)、TS3(200 kV·A) | {(3,24)、(4,5)、(5,6)、(8,9)、(13,31)、(14,15)、(17,18)、(18,33)、(20,21)、(23,24)、(26,27)、(31,32)} | 5.72 | 48.26 | 4.87 | 563.85 | 20.29 | 99.75 | 99.98 | 
| 台区 编号  | SVSCLI/ kV·A  | β(t) | 台区 编号  | SVSCLI/ kV·A  | β(t) | 台区 编号  | SVSCLI/ kV·A  | β(t) | ||||||||
| 3 | 80 | 0.43 | 13 | 150 | 0.43 | 24 | 70 | 0.43 | ||||||||
| 4 | 50 | 0.43 | 14 | 110 | 0.52 | 25 | 60 | 0.38 | ||||||||
| 5 | 70 | 0.51 | 15 | 150 | 0.60 | 26 | 110 | 0.43 | ||||||||
| 6 | 150 | 0.43 | 16 | 130 | 0.43 | 27 | 100 | 0.43 | ||||||||
| 7 | 140 | 0.69 | 17 | 120 | 0.65 | 28 | 40 | 0.52 | ||||||||
| 8 | 130 | 0.68 | 18 | 150 | 0.43 | 29 | 70 | 0.53 | ||||||||
| 9 | 150 | 0.45 | 20 | 30 | 0.43 | 30 | 100 | 0.64 | ||||||||
| 10 | 150 | 0.44 | 21 | 80 | 0.55 | 31 | 140 | 0.43 | ||||||||
| 11 | 150 | 0.60 | 22 | 100 | 0.67 | 32 | 90 | 0.43 | ||||||||
| 12 | 150 | 0.70 | 23 | 30 | 0.43 | 33 | 110 | 0.43 | 
Table 5 The planning results with medium-voltage and low-voltage flexible interconnection planning method 1
| 台区 编号  | SVSCLI/ kV·A  | β(t) | 台区 编号  | SVSCLI/ kV·A  | β(t) | 台区 编号  | SVSCLI/ kV·A  | β(t) | ||||||||
| 3 | 80 | 0.43 | 13 | 150 | 0.43 | 24 | 70 | 0.43 | ||||||||
| 4 | 50 | 0.43 | 14 | 110 | 0.52 | 25 | 60 | 0.38 | ||||||||
| 5 | 70 | 0.51 | 15 | 150 | 0.60 | 26 | 110 | 0.43 | ||||||||
| 6 | 150 | 0.43 | 16 | 130 | 0.43 | 27 | 100 | 0.43 | ||||||||
| 7 | 140 | 0.69 | 17 | 120 | 0.65 | 28 | 40 | 0.52 | ||||||||
| 8 | 130 | 0.68 | 18 | 150 | 0.43 | 29 | 70 | 0.53 | ||||||||
| 9 | 150 | 0.45 | 20 | 30 | 0.43 | 30 | 100 | 0.64 | ||||||||
| 10 | 150 | 0.44 | 21 | 80 | 0.55 | 31 | 140 | 0.43 | ||||||||
| 11 | 150 | 0.60 | 22 | 100 | 0.67 | 32 | 90 | 0.43 | ||||||||
| 12 | 150 | 0.70 | 23 | 30 | 0.43 | 33 | 110 | 0.43 | 
| 1 |  
											PAMSHETTI V B, SINGH S, THAKUR A K, et al. Cooperative operational planning model for distributed energy resources with soft open point in active distribution network[J]. IEEE Transactions on Industry Applications, 2023, 59 (2): 2140- 2151. 
																							 DOI  | 
										
| 2 | 汪泽州, 张明明, 钱峰强, 等. 含光伏接入的中压配电网集中调控优化策略[J]. 中国电力, 2023, 56 (2): 15- 22. | 
| WANG Zezhou, ZHANG Mingming, QIAN Fengqiang, et al. Centralized regulation and optimization strategy for MV distribution network with PV integration[J]. Electric Power, 2023, 56 (2): 15- 22. | |
| 3 |  
											JIANG X, ZHOU Y, MING W L, et al. An overview of soft open points in electricity distribution networks[J]. IEEE Transactions on Smart Grid, 2022, 13 (3): 1899- 1910. 
																							 DOI  | 
										
| 4 | 谢学渊, 刘潇潇, 李超, 等. 考虑分布式电源和电动汽车集群调度的配电网络重构[J]. 中国电力, 2023, 56 (1): 119- 125. | 
| XIE Xueyuan, LIU Xiaoxiao, LI Chao, et al. Distribution network reconfiguration considering distributed generation and electric vehicle cluster scheduling[J]. Electric Power, 2023, 56 (1): 119- 125. | |
| 5 |  
											胡珺如, 窦晓波, 李晨, 等. 面向中低压配电网的分布式协同无功优化策略[J]. 电力系统自动化, 2021, 45 (22): 47- 54. 
																							 DOI  | 
										
|  
											HU Junru, DOU Xiaobo, LI Chen, et al. Distributed cooperative reactive power optimization strategy for medium-and low-voltage distribution network[J]. Automation of Electric Power Systems, 2021, 45 (22): 47- 54. 
																							 DOI  | 
										|
| 6 |  
											HUANG W J, ZHENG W Y, HILL D J. Distribution network reconfiguration for short-term voltage stability enhancement: an efficient deep learning approach[J]. IEEE Transactions on Smart Grid, 2021, 12 (6): 5385- 5395. 
																							 DOI  | 
										
| 7 | 刘科研, 盛万兴, 赵鹏杰, 等. 信息物理环境下基于电力电子变压器的跨台区光伏消纳策略[J]. 电力自动化设备, 2020, 40 (12): 66- 72, 87, 73-75. | 
| LIU Keyan, SHENG Wanxing, ZHAO Pengjie, et al. Photovoltaic consumption strategy across multiple transformer districts based on PET under cyber physical system[J]. Electric Power Automation Equipment, 2020, 40 (12): 66- 72, 87, 73-75. | |
| 8 | 董昱, 董存, 于若英, 等. 基于线性最优潮流的电力系统新能源承载能力分析[J]. 中国电力, 2022, 55 (3): 1- 8. | 
| DONG Yu, DONG Cun, YU Ruoying, et al. Renewable energy capacity assessment in power system based on linearized OPF[J]. Electric Power, 2022, 55 (3): 1- 8. | |
| 9 | 李昀宸, 吕志鹏, 刘文龙, 等. 柔性互联配电台区联合优化配置[J]. 高电压技术, 2023, 49 (10): 4223- 4231. | 
| LI Yunchen, LÜ Zhipeng, LIU Wenlong, et al. Coordinated optimize configuration of flexible interconnection of distribution station area[J]. High Voltage Engineering, 2023, 49 (10): 4223- 4231. | |
| 10 | 孙国强, 徐广开, 沈培锋, 等. 规模化电动汽车负荷的柔性台区协同经济调度[J]. 电网技术, 2020, 44 (11): 4395- 4404. | 
| SUN Guoqiang, XU Guangkai, SHEN Peifeng, et al. Coordinated economic dispatch of flexible district for large-scale electric vehicle load[J]. Power System Technology, 2020, 44 (11): 4395- 4404. | |
| 11 |  
											YANG Z, YANG F, MIN H, et al. A local control strategy for voltage fluctuation suppression in a flexible interconnected distribution station area based on soft open point[J]. Sustainability, 2023, 15 (5): 4424. 
																							 DOI  | 
										
| 12 | 林文键, 朱振山, 温步瀛. 含电动汽车和智能软开关的配电网动态重构[J]. 电力自动化设备, 2022, 42 (10): 202- 209, 217. | 
| LIN Wenjian, ZHU Zhenshan, WEN Buying. Dynamic reconfiguration of distribution network with electric vehicles and soft open point[J]. Electric Power Automation Equipment, 2022, 42 (10): 202- 209, 217. | |
| 13 | 王成山, 宋关羽, 李鹏, 等. 考虑分布式电源运行特性的有源配电网智能软开关SOP规划方法[J]. 中国电机工程学报, 2017, 37 (7): 1889- 1897. | 
| WANG Chengshan, SONG Guanyu, LI Peng, et al. Optimal configuration of soft open point for active distribution network considering the characteristics of distributed generation[J]. Proceedings of the CSEE, 2017, 37 (7): 1889- 1897. | |
| 14 |  
											马丽, 薛飞, 石季英, 等. 有源配电网分布式电源与智能软开关三层协调规划模型[J]. 电力系统自动化, 2018, 42 (11): 86- 93. 
																							 DOI  | 
										
|  
											MA Li, XUE Fei, SHI Jiying, et al. Tri-level coordinated planning model of distributed generator and intelligent soft open point for active distribution network[J]. Automation of Electric Power Systems, 2018, 42 (11): 86- 93. 
																							 DOI  | 
										|
| 15 | 徐振东, 张晓, 徐波, 等. 计及智能储能软开关的配电网扩展规划[J]. 智慧电力, 2022, 50 (5): 48- 55. | 
| XU Zhendong, ZHANG Xiao, XU Bo, et al. Planning of distribution network expansion considering SOP integrated with ESS[J]. Smart Power, 2022, 50 (5): 48- 55. | |
| 16 | 徐来烽, 张沈习, 叶琳浩, 等. 考虑动态重构和智能软开关接入的配电网源网荷储联合规划[J]. 南方电网技术, 2024, 18 (4): 130- 140. | 
| XU Laifeng, ZHANG Shenxi, YE Linhao, et al. Joint planning of source-network-load-storage in distribution network considering dynamic reconfiguration and intelligent soft open point[J]. Southern Power System Technology, 2024, 18 (4): 130- 140. | |
| 17 |  
											黄志强, 陈业伟, 毛志鹏, 等. 柔性多状态开关与分布式储能系统联合接入规划[J]. 电力系统自动化, 2022, 46 (14): 29- 37. 
																							 DOI  | 
										
|  
											HUANG Zhiqiang, CHEN Yewei, MAO Zhipeng, et al. Joint access planning of soft open point and distributed energy storage system[J]. Automation of Electric Power Systems, 2022, 46 (14): 29- 37. 
																							 DOI  | 
										|
| 18 | WU H B, HE Y, LIN X S, et al. Optimal configuration of flexible interconnection devices for transferring photovoltaic power in active distribution network[J]. Journal of Electrical Engineering & Technology, 2023, 18 (2): 793- 804. | 
| 19 |  
											WU T H, ZHENG Y P, WU H B, et al. Power transfer and multi-control mode of a distribution network based on a flexible interconnected device[J]. IEEE Access, 2019, 7, 148326- 148335. 
																							 DOI  | 
										
| 20 | 徐旖旎, 刘海涛, 熊雄, 等. 低压配电台区柔性互联关键技术与发展模式[J]. 中国电机工程学报, 2022, 42 (11): 3986- 4001. | 
| XU Yini, LIU Haitao, XIONG Xiong, et al. Key technologies and development modes of flexible interconnection of low-voltage distribution station area[J]. Proceedings of the CSEE, 2022, 42 (11): 3986- 4001. | |
| 21 |  
											祖国强, 郝子源, 黄旭, 等. 考虑低压台区柔性互联的配电网最大供电能力[J]. 电力系统自动化, 2023, 47 (7): 84- 93. 
																							 DOI  | 
										
|  
											ZU Guoqiang, HAO Ziyuan, HUANG Xu, et al. Total supply capability of distribution network considering flexible interconnection of low-voltage distribution station areas[J]. Automation of Electric Power Systems, 2023, 47 (7): 84- 93. 
																							 DOI  | 
										|
| 22 |  
											MUDALIYAR S, MISHRA S. Real-time coordinated control of low-voltage DC distribution network with soft opening point[J]. IEEE Transactions on Power Electronics, 2021, 36 (6): 7123- 7137. 
																							 DOI  | 
										
| 23 | 曹昉, 郑金钊, 郑怡馨. 基于VSC的优质光伏资源区配电台区柔性互联规划方法[J]. 南方电网技术, 2023, 17 (1): 14- 25. | 
| CAO Fang, ZHENG Jinzhao, ZHENG Yixin. VSC-based flexible interconnection planning method for distribution station areas of high-quality photovoltaic resource[J]. Southern Power System Technology, 2023, 17 (1): 14- 25. | |
| 24 | 张忠会, 雷大勇, 李俊, 等. 基于自适应ε-支配多目标粒子群算法的含SOP的主动配电网源–网–荷–储双层协同规划模型[J]. 电网技术, 2022, 46 (6): 2199- 2212. | 
| ZHANG Zhonghui, LEI Dayong, LI Jun, et al. Source-network-load-storage bi-level collaborative planning model of active distribution network with SOP based on adaptive ε-dominating multi-objective particle swarm optimization algorithm[J]. Power System Technology, 2022, 46 (6): 2199- 2212. | |
| 25 | 孙彩, 李奇, 邱宜彬, 等. 余电上网/制氢方式下微电网系统全生命周期经济性评估[J]. 电网技术, 2021, 45 (12): 4650- 4660. | 
| SUN Cai, LI Qi, QIU Yibin, et al. Economic evaluation of whole life cycle of the micro-grid system under the mode of residual power connection/hydrogen production[J]. Power System Technology, 2021, 45 (12): 4650- 4660. | |
| 26 | 张忠会, 雷大勇, 蒋昌辉, 等. 基于二阶锥规划和NNC法的交直流混合配电网双层规划模型及其求解方法[J]. 中国电机工程学报, 2023, 43 (1): 70- 85. | 
| ZHANG Zhonghui, LEI Dayong, JIANG Changhui, et al. A bi-level planning model and its solution method of AC/DC hybrid distribution network based on second-order cone programming and NNC method[J]. Proceedings of the CSEE, 2023, 43 (1): 70- 85. | 
| [1] | SUN Qixing, ZHANG Chao, ZHANG Mengge, YOU Peipei, LI Junlong. Reserve Fee Mechanism Design for Distributed Generation Users Adapting to New Power Systems [J]. Electric Power, 2025, 58(6): 190-197. | 
| [2] | WANG Deshun, LEI Jie, HU Anping, WANG Bing, FENG Xinzhen, WANG Zhihui. Siting and Sizing of Distributed Generation in Distribution Transformer Areas Using Multi-objective Bi-level Optimization [J]. Electric Power, 2025, 58(10): 136-146. | 
| [3] | LI Yuehua, WANG Shuai, MA Zhuoran, YANG Zhiming, LIAO Xiaobing. Power Flow Optimization and Control Method for Distribution Networks Based on Hybrid Power Electronics Transformers [J]. Electric Power, 2025, 58(10): 171-179. | 
| [4] | Fengliang XU, Keqian WANG, Wenhao WANG, Peng WANG, Huanchang WANG, Shuai Zhang, Fengzhan ZHAO. Collaborative Expansion Planning of Source-Grid-Storage in Medium Voltage Distribution System Considering Operational Flexibility [J]. Electric Power, 2024, 57(7): 98-108. | 
| [5] | Pengfei FAN, Baoqin LI, Jiangwei HOU, Rong LI, Chongming SONG, Kaijun LIN. Economic Capacity Assessment of Renewables in Distribution Networks [J]. Electric Power, 2024, 57(7): 196-202. | 
| [6] | Jiawu WANG, Dianyun ZHAO, Changfeng LIU, Kang CHEN, Yumin ZHANG. Analytical Target Cascading Based Active Distribution Network Level Multi-agent Autonomous Collaborative Optimization [J]. Electric Power, 2024, 57(7): 214-226. | 
| [7] | Meiling LUO, Ying MA, Weibing HUANG, Lingkun MENG, Xiaojun YU, Tao ZHENG. IIDG Fault Current Analysis and Calculation Considering Voltage Amplitude Detection Delay and Phase Jump [J]. Electric Power, 2024, 57(2): 72-81. | 
| [8] | YE Chang, YI Huamao, ZHU Jiongda, ZHAO Jingjing, WU Lian. A Cluster Partition Method for Distributed Generation Considering Flexibility Supply-Demand Balance and Response Speed [J]. Electric Power, 2023, 56(2): 150-156. | 
| [9] | Yan HUANG, Yingpeng HAO, Huixian WANG, Longye ZHENG, Kaizhe ZHANG, Yinliang XU. Research on Synchronization Control of Distributed Generation Based on Second-Order Unified Model [J]. Electric Power, 2023, 56(12): 41-50. | 
| [10] | Qiang LI, Yao WANG, Yingying HU, Xiaoming ZHENG, Linna ZHANG, Yongming JING. Multi-Stage Coordinated Planning Method for Transmission Network and Energy Storage Considering Carbon Trading Cost [J]. Electric Power, 2023, 56(12): 199-205. | 
| [11] | XIE Xueyuan, LIU Xiaoxiao, LI Chao, HU Zipeng, LIU Kai, CHEN Tao. Distribution Network Reconfiguration Considering Distributed Generation and Electric Vehicle Cluster Scheduling [J]. Electric Power, 2023, 56(1): 119-125. | 
| [12] | ZHANG Liming, LI Hao, WU Yaxiong, GAO Chong, ZHANG Junxiao, LIU Yong. A Reliability Evaluation Method for Power System with Energy Storage Based on Operation Optimization [J]. Electric Power, 2022, 55(9): 23-28. | 
| [13] | YANG Zuoxiang, WANG Jingjing, WU Jiang, TANG Shasha, HOU Bin. Assessment Method of Comprehensive Energy Saving Potential of Distribution Network Considering Source-load Power Uncertainty [J]. Electric Power, 2022, 55(8): 151-156,164. | 
| [14] | DANG Bin, ZOU Qiqun, ZHANG Bin, FU Dong, YOU Mengkai, LE Jian. Generation-Storage Cooperative Optimization Control Method for Distribution Network Based on HSA-PSO Algorithm [J]. Electric Power, 2022, 55(4): 63-69. | 
| [15] | ZHAO Yinan, SONG Bin, QIAN Zhenyu, LI Shunxin. Dispatching Architecture and Planning Method of Future Distribution Network [J]. Electric Power, 2022, 55(4): 70-77. | 
| Viewed | ||||||
| 
										Full text | 
									
										 | 
								|||||
| 
										Abstract | 
									
										 | 
								|||||
