Electric Power ›› 2022, Vol. 55 ›› Issue (7): 201-208.DOI: 10.11930/j.issn.1004-9649.202109031
• Energy Conservation and Environmental Protection • Previous Articles
LIU Yi
Received:
2021-09-03
Revised:
2021-11-30
Online:
2022-07-28
Published:
2022-07-20
Supported by:
LIU Yi. A Pilot-scale Research on SO3 Control in Flue Gas of Coal Fired Power Plant[J]. Electric Power, 2022, 55(7): 201-208.
[1] 刘勇. 碱基吸收剂喷射脱除燃煤烟气中SO3的实验研究[D]. 杭州: 浙江大学, 2018. LIU Yong. Experimental study on the removal of SO3 from coal-fired flue gas by alkaline sorbent injection[D]. Hangzhou: Zhejiang University, 2018. [2] 胡鹏博, 翁麒宇, 李端乐, 等. 模拟烟气中气态痕量元素污染物发生方法的研究现状[J]. 工程科学学报, 2020, 42(11): 1411–1421 HU Pengbo, WENG Qiyu, LI Duanle, et al. Research status of methods for generating gaseous trace element pollutants in simulated flue gas[J]. Chinese Journal of Engineering, 2020, 42(11): 1411–1421 [3] 李林欣, 李乾军, 张雯娣, 等. 燃煤烟气中SO3的产生及其治理措施[J]. 化工装备技术, 2018, 39(1): 1–6 LI Linxin, LI Qianjun, ZHANG Wendi, et al. The production and control of SO3 in coal-fired flue gas[J]. Chemical Equipment Technology, 2018, 39(1): 1–6 [4] 罗汉成, 潘卫国, 丁红蕾, 等. 燃煤锅炉烟气中SO3的产生机理及其控制技术[J]. 锅炉技术, 2015, 46(6): 69–72 LUO Hancheng, PAN Weiguo, DING Honglei, et al. The formation mechanism of SO3 from coal-fired boiler flue gasand its control technology[J]. Boiler Technology, 2015, 46(6): 69–72 [5] 束航, 张玉华, 范红梅, 等. SCR脱硝中催化剂表面NH4HSO4生成及分解的原位红外研究[J]. 化工学报, 2015, 66(11): 4460–4468 SHU Hang, ZHANG Yuhua, FAN Hongmei, et al. FT-IR study of formation and decomposition of ammonium bisulfates on surface of SCR catalyst for nitrogen removal[J]. CIESC Journal, 2015, 66(11): 4460–4468 [6] 尹子骏, 苏胜, 卿梦霞, 等. 一种典型钒钛系SCR催化剂SO3生成特性研究[J]. 化工学报, 2021, 72(5): 2596–2603 YIN Zijun, SU Sheng, QING Mengxia, et al. Study on SO3 formation characteristics of a typical vanadium titanium SCR catalyst[J]. CIESC Journal, 2021, 72(5): 2596–2603 [7] WIJAYANTI K, LEISTNER K, CHAND S, et al. Deactivation of Cu-SSZ-13 by SO2 exposure under SCR conditions[J]. Catalysis Science & Technology, 2016, 6(8): 2565–2579. [8] 刘芳琪, 于敦喜, 吴建群, 等. 燃煤锅炉SCR对颗粒物排放特性影响[J]. 化工学报, 2018, 69(9): 4051–4057 LIU Fangqi, YU Dunxi, WU Jianqun, et al. Effect of SCR on particulate matter emissions from a coal-fired boiler[J]. CIESC Journal, 2018, 69(9): 4051–4057 [9] 杨江毅, 陆强, 曲艳超, 等. 选择性脱除三氧化硫技术研究[J]. 环境工程, 2019, 37(1): 106–112 YANG Jiangyi, LU Qiang, QU Yanchao, et al. Research on selective removal of sulfur trioxide[J]. Environmental Engineering, 2019, 37(1): 106–112 [10] DAMLE A S, ENSOR D S, SPARKS L E. Prediction of the opacity of detached plumes formed by condensation of vapors[J]. Atmospheric Environment, 1984, 18(2): 435–444. [11] KIKUCHI R. Environmental management of sulfur trioxide emission: impact of SO3 on human health[J]. Environmental Management, 2001, 27(6): 837–844. [12] 李小龙, 段玖祥, 李军状, 等. 燃煤电厂烟气中SO3控制技术及测试方法探讨[J]. 环境工程, 2017, 35(5): 98–102 LI Xiaolong, DUAN Jiuxiang, LI Junzhuang, et al. Control technology and determination methods of SO3 in flue gas from coal-fired power plants[J]. Environmental Engineering, 2017, 35(5): 98–102 [13] 王宏亮, 薛建明, 许月阳, 等. 燃煤电站锅炉烟气中SO3的生成及控制[J]. 电力科技与环保, 2014, 30(5): 17–20 WANG Hongliang, XUE Jianming, XU Yueyang, et al. Formation and control of SO3 from coal-fired power plants[J]. Electric Power Technology and Environmental Protection, 2014, 30(5): 17–20 [14] 王正华, 周昊, 翁安心, 等. 不同煤种高温燃烧时NO x和SO2生成影响因素的实验[J]. 锅炉技术, 2003, 34(3): 11–14 WANG Zhenghua, ZHOU Hao, WENG Anxin, et al. A study of NOx and SO2 emission of different coal in high temperature combustion[J]. Boiler Technology, 2003, 34(3): 11–14 [15] 胡斌, 汤诗佳, 王欣星, 等. 脱硫废水蒸发协同脱除烟气SO3实验研究[J]. 徐州工程学院学报(自然科学版), 2021, 36(1): 53–57 HU Bin, TANG Shijia, WANG Xinxing, et al. Experimental study on simultaneous control of SO3 by desulfurization wastewater evaporation[J]. Journal of Xuzhou Institute of Technology (Natural Sciences Edition), 2021, 36(1): 53–57 [16] 王智, 贾莹光, 祁宁. 燃煤电站锅炉及SCR脱硝中SO3的生成及危害[J]. 东北电力技术, 2005, 26(9): 1–3 WANG Zhi, JIA Yingguang, QI Ning. The creation and harm of SO3 for coal-fired boiler and SCR denitration[J]. Northeastern Electric Power Technology, 2005, 26(9): 1–3 [17] 林翔. 低低温电除尘器提效及多污染物协同治理探讨[J]. 机电技术, 2014, 37(3): 10–13 [18] 刘晓敏. 燃煤电厂烟气SO3迁移转化特性试验分析[J]. 热力发电, 2020, 49(6): 157–162 LIU Xiaomin. Migration and transformation characteristics of SO3 in coal-fired power plants[J]. Thermal Power Generation, 2020, 49(6): 157–162 [19] 杨钊. 商用SCR催化剂氧化SO2及燃煤烟气SO3脱除特性研究[D]. 南京: 东南大学, 2018. YANG Zhao. Study on SO2 oxidation of commercial SCR catalyst and removal characteristics of SO3 from coal-fired flue gas[D]. Nanjing: Southeast University, 2018. [20] ZHENG C H, WANG Y F, LIU Y, et al. Formation, transformation, measurement, and control of SO3 in coal-fired power plants[J]. Fuel, 2019, 241: 327–346. [21] XIAO H P, CHEN Y, QI C, et al. Effect of Na poisoning catalyst (V2O5-WO3/TiO2) on denitration process and SO3 formation[J]. Applied Surface Science, 2018, 433: 341–348. [22] 卿梦霞. 燃煤烟气SO3与硫酸氢铵生成机理研究[D]. 武汉: 华中科技大学, 2019. QING Mengxia. Study on generation mechanism of SO3 and ammounium hydrogen sulfate in coal-fired flue gas[D]. Wuhan: Huazhong University of Science and Technology, 2019. [23] 胡敏, 郭宏昶, 刘宗余. 催化裂化烟气蓝色烟羽形成原因分析与对策[J]. 炼油技术与工程, 2015, 45(11): 7–12 HU Min, GUO Hongchang, LIU Zongyu. Study on formation of blue smoke plume of FCCU flue gas and countermeasures[J]. Petroleum Refinery Engineering, 2015, 45(11): 7–12 [24] LU J Y, ZHOU Z Y, ZHANG H Z, et al. Influenced factors study and evaluation for SO2/SO3 conversion rate in SCR process[J]. Fuel, 2019, 245: 528–533. [25] MA J R, LIU Z Y, LIU Q Y, et al. SO2 and NO removal from flue gas over V2O5/AC at lower temperatures—role of V2O5 on SO2 removal[J]. Fuel Processing Technology, 2008, 89(3): 242–248. [26] GUO X Y, BARTHOLOMEW C, HECKER W, et al. Effects of sulfate species on V2O5/TiO2 SCR catalysts in coal and biomass-fired systems[J]. Applied Catalysis B:Environmental, 2009, 92(1/2): 30–40. [27] 刘亚明, 束航, 徐齐胜, 等. SCR脱硝过程中SO2催化氧化的原位红外研究[J]. 燃料化学学报, 2015, 43(8): 1018–1024 LIU Yaming, SHU Hang, XU Qisheng, et al. FT-IR study of the catalytic oxidation of SO2 during the process of selective catalytic reduction of NO with NH3 over commercial catalysts[J]. Journal of Fuel Chemistry and Technology, 2015, 43(8): 1018–1024 [28] 刘含笑, 郦建国, 姚宇平, 等. 低低温电除尘系统对SO3脱除性能研究[J]. 发电技术, 2022, 43(1): 147–154 LIU Hanxiao, LI Jianguo, YAO Yuping, et al. Study on SO3 removal performance of low-low temperature electrostatic precipitator system[J]. Power Generation Technology, 2022, 43(1): 147–154 [29] 杜振, 杨立强, 魏宏鸽, 等. 低低温电除尘器对粉尘特性和SO3脱除效果影响分析[J]. 中国电力, 2017, 50(9): 125–128 DU Zhen, YANG Liqiang, WEI Hongge, et al. Analysis on the impacts of low-low temperature eletrostatic precipitator on dust characteristics and SO3 removal effect[J]. Electric Power, 2017, 50(9): 125–128 [30] NAKAYAMA Y, TAKEUCHI Y, ITOH M, et al. MHI high efficiency system-proven technology for multi pollutant removal[R]. Hiroshima Research & Development Center. 2011: 1–11. [31] 胡斌, 刘勇, 任飞, 等. 低低温电除尘协同脱除细颗粒与SO3实验研究[J]. 中国电机工程学报, 2016, 36(16): 4319–4325,4514 HU Bin, LIU Yong, REN Fei, et al. Experimental study on simultaneous control of fine particle and SO3 by low-low temperature electrostatic precipitator[J]. Proceedings of the CSEE, 2016, 36(16): 4319–4325,4514 [32] 张绪辉. 低低温电除尘器对细颗粒物及三氧化硫的协同脱除研究[D]. 北京: 清华大学, 2015. ZHANG Xuhui. Studies on synergetic removal of fine particulates and SO3 by an extra cold-side electrostatic precipitator[D]. Beijing: Tsinghua University, 2015. [33] 张悠. 烟气中SO3测试技术及其应用研究[D]. 杭州: 浙江大学, 2013. ZHANG You. Research and application of SO3 measurement in flue gas[D]. Hangzhou: Zhejiang University, 2013. [34] YANG F X, LIU H X, FENG P, et al. Effects of wet flue gas desulfurization and wet electrostatic precipitator on particulate matter and sulfur oxide emission in coal-fired power plants[J]. Energy & Fuels, 2020, 34(12): 16423–16432. [35] PAN D P, ZHANG D P, ZHANG W D. Investigation on removal characteristics of SO3 acid mist during limestone-gypsum desulfurization process[J]. Energy & Fuels, 2018, 32(12): 12949–12954. |
[1] | Dongxu LIU, Xiaoyuan ZHANG, Qing MA, Qianwei FENG, Zhen DU. Analysis on SO3 Generation, Migration and Control Technology of Coal-fired Units [J]. Electric Power, 2024, 57(6): 235-242. |
[2] | DU Zhen, WANG Zhidong, JIANG Jianping, ZHU Yue. Analysis on PM2.5 Emission Characteristics of Wet Desulfurization System [J]. Electric Power, 2021, 54(6): 153-158. |
[3] | ZHANG Zhiqiang, ZHU Fahua, ZOU Siyi, SHI Pengfei, WANG Xiaoling, YOU Qin, YAO Li, YAN Shaoshuai, WANG Xing. Study on Environmental Benefits of Wet Plume Treatment Project Based on Actual Measurements [J]. Electric Power, 2020, 53(9): 202-207. |
[4] | WU Jiayu, ZHU Jie, MO Hua, ZHANG Feng, SHUAI Wei, ZHANG Qing, NA Qin. Test Study on SO3 Control Effect of Slurry Cooling Wet Plume Treatment Project in a Typical Coal-Fired Power Plant [J]. Electric Power, 2020, 53(8): 145-150,172. |
[5] | TAO Ming, WANG Shaoliang, LIU Haipei, HE Yudong. Research and Application of Impacting Method for Liquid Droplet Testing in Wet Flue Gas Desulfurization System [J]. Electric Power, 2020, 53(2): 173-179. |
[6] | LI Bin, YANG Yang. The Controlled Condensation Method for the Sampling of SO3 in the Flue Gas [J]. Electric Power, 2020, 53(1): 140-146. |
[7] | XUE Minghua, XIA Duobing, HU Zijian, TIAN Chang, SU Mingxu. Ultrasonic Attenuation Spectrum Based Method for Measuring the Particle Size Distribution of Gypsum Slurry [J]. Electric Power, 2019, 52(9): 173-178. |
[8] | MO Hua, ZHU Jie. Analysis of Key Points on Curbing Colored Plume in Coal-Fired Power Plants and Environmental Management [J]. Electric Power, 2019, 52(3): 10-15,35. |
[9] | ZHANG Zhixiang, LI Nan, ZOU Xiaogang, SU Lin, LI Wenfeng, LI Weitao, HAN Jianping, XU Dangqi. Study on the Behavior of Sulphur Trioxide in the High-Sulphur Low-Temperature and High-Ash Flue Gas Environment [J]. Electric Power, 2019, 52(3): 23-28. |
[10] | CHEN Kuixu. Collaborative Removal of SO3 and Hg by Electrostatic-Fabric Integrated Precipitator [J]. Electric Power, 2019, 52(3): 29-35. |
[11] | CHEN Weixiang, GUO Jun, YE Xinglian, LIU Xiyao, CHEN Yongqiang, ZHENG Fang, GONG Guohan. Experimental Study of the SO3 Detection and Collection Efficiency in Coal-fired Flue Gas [J]. Electric Power, 2019, 52(3): 43-48. |
[12] | HU Dong. Feasibility Analysis on the Application of SO3 Removal Technology in Coal-fired Power Units at Low Load SCR Operation [J]. Electric Power, 2019, 52(3): 49-55. |
[13] | LI Xiaolong, LI Junzhuang, DUAN Jiuxiang, YI Yuping, ZHANG Wenjie. SO3 Cooperative Control and Emission Situation in the Flue Gas of Coal-Fired Power Plant [J]. Electric Power, 2019, 52(10): 155-161. |
[14] | WU Zhiquan, CAO Fan, YUAN Yuan, JIA Xibu. Analysis on the Influence of the Wastewater Evaporation in Flue Duct to the Flue Gas Dew Point [J]. Electric Power, 2019, 52(1): 151-155,184. |
[15] | WANG Sheng. Prospect of Non-traditional Air Pollutant Control in Coal-fired Power Plants [J]. Electric Power, 2018, 51(8): 173-179. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||