Electric Power ›› 2025, Vol. 58 ›› Issue (3): 31-42.DOI: 10.11930/j.issn.1004-9649.202406059
• Coordinated Control and Optimal Operation of High Proportion of New Energy Integrating Power Grid • Previous Articles Next Articles
Yunrui WU1(), Jianpo ZHANG1(
), Xincheng TIAN2, Kaifeng YING1, Zhong CHEN1
Received:
2024-06-18
Accepted:
2024-09-16
Online:
2025-03-23
Published:
2025-03-28
Supported by:
Yunrui WU, Jianpo ZHANG, Xincheng TIAN, Kaifeng YING, Zhong CHEN. Improved Coordinated Control Strategy of Multi-terminal DC Grids Considering Frequency Adaptation and Fast Stabilization Characteristics[J]. Electric Power, 2025, 58(3): 31-42.
控制策略 | 模式 切换 | 站间 通信 | 不平衡 功率 | 稳态电 压偏差 | 主要缺陷 | |||||
主从控制 | 需要 | 需要 | 主站承担 | 无差 | 动态特性差,稳定 速度慢 | |||||
电压裕度控制 | 需要 | 不需要 | 主站承担 | 无差 | 电压裕度整定复杂 | |||||
直流电压下垂 控制 | 不需要 | 不需要 | 共同承担 | 有差 | 功率分配精度低 |
Table 1 Comparison of coordinated control modes
控制策略 | 模式 切换 | 站间 通信 | 不平衡 功率 | 稳态电 压偏差 | 主要缺陷 | |||||
主从控制 | 需要 | 需要 | 主站承担 | 无差 | 动态特性差,稳定 速度慢 | |||||
电压裕度控制 | 需要 | 不需要 | 主站承担 | 无差 | 电压裕度整定复杂 | |||||
直流电压下垂 控制 | 不需要 | 不需要 | 共同承担 | 有差 | 功率分配精度低 |
参数名称 | 数值 | |
额定直流电压/kV | 500 | |
VSC1侧额定交流电压/kV | 500 | |
VSC1额定输送容量/MW | 800 | |
VSC2侧额定交流电压/kV | 500 | |
VSC2额定输送容量/MW | 800 | |
VSC3侧额定交流电压/kV | 500 | |
VSC3额定输送容量/MW | ||
VSC4侧额定交流电压/kV | 500 | |
VSC4额定输送容量/MW |
Table 2 Basic parameters of the simulation model
参数名称 | 数值 | |
额定直流电压/kV | 500 | |
VSC1侧额定交流电压/kV | 500 | |
VSC1额定输送容量/MW | 800 | |
VSC2侧额定交流电压/kV | 500 | |
VSC2额定输送容量/MW | 800 | |
VSC3侧额定交流电压/kV | 500 | |
VSC3额定输送容量/MW | ||
VSC4侧额定交流电压/kV | 500 | |
VSC4额定输送容量/MW |
参数 | VSC2 | VSC4 | ||
主从控制 Prefj/MW | –750 | |||
下垂控制 Prefj/MW | –500 | –750 | ||
下垂系数 kj/(kV·MW–1) | 0.2 | 0.1 | ||
改进协调控制 Prefj/MW | –500 | –750 | ||
单位下垂功率 ∆Prefj/MW | 50 | 50 | ||
功率分配系数 Kj | 0.1 | 0.2 | ||
频率下垂系数 kfj | 200 | 200 | ||
频率调节效应系数 Ksj/(MW∙Hz–1) |
Table 3 Main parameters of each control mode
参数 | VSC2 | VSC4 | ||
主从控制 Prefj/MW | –750 | |||
下垂控制 Prefj/MW | –500 | –750 | ||
下垂系数 kj/(kV·MW–1) | 0.2 | 0.1 | ||
改进协调控制 Prefj/MW | –500 | –750 | ||
单位下垂功率 ∆Prefj/MW | 50 | 50 | ||
功率分配系数 Kj | 0.1 | 0.2 | ||
频率下垂系数 kfj | 200 | 200 | ||
频率调节效应系数 Ksj/(MW∙Hz–1) |
1 | 郑国光. 支撑“双碳”目标实现的问题辨识与关键举措研究[J]. 中国电力, 2023, 56 (11): 1- 8. |
ZHENG Guoguang. Problem identification and key measures to support the achievement of carbon peak and carbon neutrality[J]. Elecric Power, 2023, 56 (11): 1- 8. | |
2 | 李惠玲. 新型电力系统背景下西部送端直流电网及系统运行特性[J]. 中国电力, 2023, 56 (8): 166- 174. |
LI Huiling. Sending-terminal DC power grid in Eestern China and its operation characteristics in the context of new power system[J]. Elecric Power, 2023, 56 (8): 166- 174. | |
3 | 徐文哲, 张哲任, 徐政. 适用于大规模纯新能源发电基地送出的混合式直流输电系统[J]. 中国电力, 2023, 56 (4): 17- 27. |
XU Wenzhe, ZHANG Zheren, XU Zheng. A hybrid HVDC topology suitable for large-scale pure clean energy power base transmission[J]. Elecric Power, 2023, 56 (4): 17- 27. | |
4 | 李康, 黄萌, 查晓明, 等. 高压直流输电系统可靠性分析方法综述[J]. 电力系统保护与控制, 2024, 52 (9): 174- 187. |
LI Kang, HUANG Meng, ZHA Xiaoming, et al. An overview of reliability analysis methods for an HVDC transmission system[J]. Power System Protection and Control, 2024, 52 (9): 174- 187. | |
5 |
LI D D, YE X Y, YANG F, et al. Frequency compensation of VSC-HVDC combined with inertia simulation: a passivity-based control approach[J]. Electric Power Systems Research, 2024, 229, 110160.
DOI |
6 |
XING P X, YANG Y H, PENG J S, et al. Analysis of VSC-HVDC support capability for power grids with large-scale renewable energy and multi-infeed HVDC links[J]. Energy Reports, 2023, 9, 1084- 1091.
DOI |
7 |
LI C S, ZHANG X W, HE P, et al. Adaptive droop control of VSC-MTDC system based on virtual inertia[J]. Electronics, 2023, 12 (10): 2324.
DOI |
8 | 李从善, 甄子凯, 和萍, 等. 风电与多端柔性直流输电系统自适应分频协调控制策略研究[J]. 电力科学与技术学报, 2024, 39 (1): 65- 73, 92. |
LI Congshan, ZHEN Zikai, HE Ping, et al. Research on adaptive frequency division coordinated control strategy for wind power and multi terminal flexible HVDC transmission system[J]. Journal of Electric Power Science and Technology, 2024, 39 (1): 65- 73, 92. | |
9 | 郭家浩, 樊艳芳, 侯俊杰. 基于电流行波突变特性的多端柔性直流线路纵联保护[J]. 电力系统保护与控制, 2023, 51 (18): 31- 42. |
GUO Jiahao, FAN Yanfang, HOU Junjie. Pilot protection method for multi terminal flexible DC lines based on current traveling wave mutation characteristics[J]. Power System Protection and Control, 2023, 51 (18): 31- 42. | |
10 | YANG M, PEI X J, ZHANG M, et al. An improved master-slave control strategy for automatic DC voltage control under the master station failure in MTDC system[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 11(2): 1530–1541. |
11 |
CHANDIO R H, CHACHAR F A, SOOMRO J B, et al. Control and protection of MMC-based HVDC systems: a review[J]. Energy Reports, 2023, 9, 1571- 1588.
DOI |
12 | 伊尹, 邓卫, 曹欣, 等. 主从控制模式下低压多端直流系统稳定性研究[J]. 太阳能学报, 2022, 43 (11): 482- 492. |
YI Yin, DENG Wei, CAO Xin, et al. Study on stability of low voltage multi-terminal DC system under master-slave control mode[J]. Acta Energiae Solaris Sinica, 2022, 43 (11): 482- 492. | |
13 |
WANG Y Z, LI B, ZHOU Z X, et al. DC voltage deviation-dependent voltage droop control method for VSC-MTDC systems under large disturbances[J]. IET Renewable Power Generation, 2020, 14 (5): 891- 896.
DOI |
14 | 付媛, 邵馨玉, 李浩. 直流配电网的暂态电压稳定控制策略[J]. 高电压技术, 2021, 47 (4): 1354- 1362. |
FU Yuan, SHAO Xinyu, LI Hao. Transient voltage stability control strategy of DC distribution network[J]. High Voltage Engineering, 2021, 47 (4): 1354- 1362. | |
15 |
LI C S, ZHANG X W, HE P, et al. Improved coordinated control strategy for VSC-MTDC system with DC voltage secondary regulation[J]. Frontiers in Energy Research, 2024, 12, 1363267.
DOI |
16 | 刘昊宇, 刘崇茹, 郑乐, 等. 直流电压准无差修正的VSC-MTDC系统协同优化下垂控制[J]. 电力系统自动化, 2022, 46 (6): 117- 126. |
LIU Haoyu, LIU Chongru, ZHENG Le, et al. Cooperative optimal droop control for VSC-MTDC system with quasi non-error DC voltage regulation[J]. Automation of Electric Power Systems, 2022, 46 (6): 117- 126. | |
17 | 成龙, 金国彬, 王利猛, 等. 考虑功率裕度和电压偏差的多端直流配电网自组织下垂控制[J]. 电力系统自动化, 2019, 43 (23): 81- 89. |
CHENG Long, JIN Guobin, WANG Limeng, et al. Self-organizing droop control of multi-terminal DC distribution network considering power margin and voltage deviation[J]. Automation of Electric Power Systems, 2019, 43 (23): 81- 89. | |
18 | 李周, 李亚州, 陆于平, 等. 多端柔性直流电网主动功率平衡协调控制策略[J]. 电力系统自动化, 2019, 43 (17): 117- 124. |
LI Zhou, LI Yazhou, LU Yuping, et al. Active power balance oriented coordinating control strategy for VSC-MTDC system[J]. Automation of Electric Power Systems, 2019, 43 (17): 117- 124. | |
19 | 陈厚合, 齐文博, 姜涛, 等. 提升海上风电经VSC-MTDC接入的低惯量系统频率稳定综合控制策略[J]. 电力自动化设备, 2022, 42 (8): 103- 110. |
CHEN Houhe, QI Wenbo, JIANG Tao, et al. Integrated control strategy for improving frequency stability of low inertia system connecting to offshore wind power via VSC-MTDC[J]. Electric Power Automation Equipment, 2022, 42 (8): 103- 110. | |
20 | LIU C R, LIU H Y, JIANG S W, et al. Dynamic frequency support and DC voltage regulation approach for VSC-MTDC systems[J]. CSEE Journal of Power and Energy Systems, 2023, 9 (2): 645- 658. |
21 |
XING C, LIU M Q, PENG J Z, et al. Frequency stability control strategy for voltage source converter-based multi-terminal DC transmission system[J]. Energies, 2024, 17 (5): 1195.
DOI |
22 | 于国星, 宋蕙慧, 马广富, 等. 含海上风电场的VSC-MTDC系统参与电网调频的顺序控制方法[J]. 电力系统自动化, 2021, 45 (4): 123- 132. |
YU Guoxing, SONG Huihui, MA Guangfu, et al. Sequence control method for VSC-MTDC system with offshore wind farm participating in frequency regulation of power grid[J]. Automation of Electric Power Systems, 2021, 45 (4): 123- 132. | |
23 | 李亚州. 多端柔性直流输电系统交直流电压稳定控制策略研究[D]. 南京: 东南大学, 2019. |
LI Yazhou. Research on AC and DC voltage stability control strategies for VSC-MTDC system. Nanjing: Southeast University, 2019. | |
24 | 董志国, 徐全海, 陈琦, 等. 参与电网调频的多端柔性直流输电系统改进下垂控制策略[J]. 南方电网技术, 2024, 18 (3): 146- 155. |
DONG Zhiguo, XU Quanhai, CHEN Qi, et al. Improved droop control strategy involved in power grid frequency regulation for VSC-MTDC transmission systems[J]. Southern Power System Technology, 2024, 18 (3): 146- 155. | |
25 | 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 电能质量 电力系统频率偏差: GB/T 15945—2008[S]. 北京: 中国标准出版社, 2008. |
[1] | Changhao XU, Weidong GUAN, Yue WANG, Jinshuai ZHANG, Peng WANG, Ning ZHOU, Bowen SHANG. Two-Layer MPC Virtual Inertia Control Strategy for Small-Scale Variable-Speed Pumped Storage Unit with Full-Size Converter [J]. Electric Power, 2025, 58(2): 216-226. |
[2] | Ping ZHAO, Haosen JIA, Hengxiao GAO, Zhenxing LI. Coordinated Control Strategy of Modular Multi-level Converter-Based Multi-terminal Direct Current System for Onshore Wind Power Faults [J]. Electric Power, 2024, 57(8): 85-95. |
[3] | Chong SHAO, Rongyi HU, Jiao YU, Mingdian WANG. Dynamic Modeling and Control Strategy for Hybrid Energy Storage System Considering State of Charge and Storage State of Hydrogen [J]. Electric Power, 2024, 57(7): 109-124. |
[4] | XUE Fei, LI Hongqiang, TIAN Bei, MA Xin. Adaptive Event-Triggered Secondary Frequency Control in Islanded Microgrids with Auxiliary Energy Storage Systems [J]. Electric Power, 2023, 56(9): 196-205. |
[5] | ZHAO Jingjing, DU Ming, LIU Shuai, LI Zibo, MA Wenhe. Frequency Modulation and Rotor Speed Recovery Strategy of Doubly-Fed Induction Generator Based on Model Predictive Control [J]. Electric Power, 2023, 56(6): 11-17. |
[6] | DANG Bin, ZOU Qiqun, ZHANG Bin, FU Dong, YOU Mengkai, LE Jian. Generation-Storage Cooperative Optimization Control Method for Distribution Network Based on HSA-PSO Algorithm [J]. Electric Power, 2022, 55(4): 63-69. |
[7] | LIN Qiyou, JIANG Wenliang, LI Yuanyuan, WANG Dongdong, MOU Sinan. Coordinated Control of DC Microgrid System Based on Bus Voltage Stratification [J]. Electric Power, 2022, 55(2): 166-171,180. |
[8] | HE Yedan, XIA Xiangyang, YIN Xu, DENG Wenhua, WANG Can, XIONG Fuqiang, ZHOU Hanliang. MMC Coordinated Control Strategy for Maximum Power Output Under Asymmetric Voltage Sag [J]. Electric Power, 2022, 55(12): 160-167. |
[9] | LU Chengyu, HUANG Hongyang, XU Qunwei, HE Yujun, WANG Ying. Cost Estimation for Voltage Sag Control Based on Multidimensional Characteristics and Hausdorff Distance [J]. Electric Power, 2021, 54(8): 11-18. |
[10] | WU Lingyun, HE Li, XIAO Xiong, TAN Chao, CHEN Gang, ZHOU Lin. The Influence of UHVDC Additional Frequency Controller on Automatic Generation Control [J]. Electric Power, 2021, 54(8): 68-74. |
[11] | SHENG Kai, ZOU Xin, QIU Jing, ZHU Xiaoxing. Refined Modeling for Power Response Characteristic of Thermal Power Unit under Primary Frequency Control [J]. Electric Power, 2021, 54(6): 111-118,152. |
[12] | YOU Guangzeng, LI Huarui, LI Changgang, LIU Chao, QIAN Yingchun, LI Lingfang. Coordinative Frequency Control of Multi HVDC Links in Sending-End Power Grid Considering Over-Frequency Protection of Wind Power Generation [J]. Electric Power, 2021, 54(5): 83-90,110. |
[13] | WANG Tianxiang, CHENG Xuekun, LI Weichao, ZHENG Jinxin. Primary Frequency Control Strategy for Wind Farms Based on Variable Parameter De-loading Control [J]. Electric Power, 2021, 54(12): 94-101. |
[14] | TANG Yaohua, GUO Weimin, CUI Yang. Research on the Frequency Control Strategy of Hydro-Thermal Power Generating Units [J]. Electric Power, 2020, 53(6): 153-160,178. |
[15] | ZHANG Bao, DING Yangjun, GU Zhenghao, YING Guangyao, FAN Yinlong. Optimization on the Control Mode of Thermal Power Unit to Suppress Low Frequency Oscillation of Power System [J]. Electric Power, 2020, 53(2): 137-141,149. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||