Electric Power ›› 2025, Vol. 58 ›› Issue (3): 31-42.DOI: 10.11930/j.issn.1004-9649.202406059
• Coordinated Control and Optimal Operation of High Proportion of New Energy Integrating Power Grid • Previous Articles Next Articles
					
													Yunrui WU1(
), Jianpo ZHANG1(
), Xincheng TIAN2, Kaifeng YING1, Zhong CHEN1
												  
						
						
						
					
				
Received:2024-06-18
															
							
															
							
																	Accepted:2024-09-16
															
							
																	Online:2025-03-23
															
							
							
																	Published:2025-03-28
															
							
						Supported by:Yunrui WU, Jianpo ZHANG, Xincheng TIAN, Kaifeng YING, Zhong CHEN. Improved Coordinated Control Strategy of Multi-terminal DC Grids Considering Frequency Adaptation and Fast Stabilization Characteristics[J]. Electric Power, 2025, 58(3): 31-42.
| 控制策略 | 模式 切换  | 站间 通信  | 不平衡 功率  | 稳态电 压偏差  | 主要缺陷 | |||||
| 主从控制 | 需要 | 需要 | 主站承担 | 无差 | 动态特性差,稳定 速度慢  | |||||
| 电压裕度控制 | 需要 | 不需要 | 主站承担 | 无差 | 电压裕度整定复杂 | |||||
| 直流电压下垂 控制  | 不需要 | 不需要 | 共同承担 | 有差 | 功率分配精度低 | 
Table 1 Comparison of coordinated control modes
| 控制策略 | 模式 切换  | 站间 通信  | 不平衡 功率  | 稳态电 压偏差  | 主要缺陷 | |||||
| 主从控制 | 需要 | 需要 | 主站承担 | 无差 | 动态特性差,稳定 速度慢  | |||||
| 电压裕度控制 | 需要 | 不需要 | 主站承担 | 无差 | 电压裕度整定复杂 | |||||
| 直流电压下垂 控制  | 不需要 | 不需要 | 共同承担 | 有差 | 功率分配精度低 | 
| 参数名称 | 数值 | |
| 额定直流电压/kV | 500 | |
| VSC1侧额定交流电压/kV | 500 | |
| VSC1额定输送容量/MW | 800 | |
| VSC2侧额定交流电压/kV | 500 | |
| VSC2额定输送容量/MW | 800 | |
| VSC3侧额定交流电压/kV | 500 | |
| VSC3额定输送容量/MW | ||
| VSC4侧额定交流电压/kV | 500 | |
| VSC4额定输送容量/MW | 
Table 2 Basic parameters of the simulation model
| 参数名称 | 数值 | |
| 额定直流电压/kV | 500 | |
| VSC1侧额定交流电压/kV | 500 | |
| VSC1额定输送容量/MW | 800 | |
| VSC2侧额定交流电压/kV | 500 | |
| VSC2额定输送容量/MW | 800 | |
| VSC3侧额定交流电压/kV | 500 | |
| VSC3额定输送容量/MW | ||
| VSC4侧额定交流电压/kV | 500 | |
| VSC4额定输送容量/MW | 
| 参数 | VSC2 | VSC4 | ||
| 主从控制 Prefj/MW | –750 | |||
| 下垂控制 Prefj/MW | –500 | –750 | ||
| 下垂系数 kj/(kV·MW–1) | 0.2 | 0.1 | ||
| 改进协调控制 Prefj/MW | –500 | –750 | ||
| 单位下垂功率 ∆Prefj/MW | 50 | 50 | ||
| 功率分配系数 Kj | 0.1 | 0.2 | ||
| 频率下垂系数 kfj | 200 | 200 | ||
| 频率调节效应系数 Ksj/(MW∙Hz–1) | 
Table 3 Main parameters of each control mode
| 参数 | VSC2 | VSC4 | ||
| 主从控制 Prefj/MW | –750 | |||
| 下垂控制 Prefj/MW | –500 | –750 | ||
| 下垂系数 kj/(kV·MW–1) | 0.2 | 0.1 | ||
| 改进协调控制 Prefj/MW | –500 | –750 | ||
| 单位下垂功率 ∆Prefj/MW | 50 | 50 | ||
| 功率分配系数 Kj | 0.1 | 0.2 | ||
| 频率下垂系数 kfj | 200 | 200 | ||
| 频率调节效应系数 Ksj/(MW∙Hz–1) | 
| 1 | 郑国光. 支撑“双碳”目标实现的问题辨识与关键举措研究[J]. 中国电力, 2023, 56 (11): 1- 8. | 
| ZHENG Guoguang. Problem identification and key measures to support the achievement of carbon peak and carbon neutrality[J]. Elecric Power, 2023, 56 (11): 1- 8. | |
| 2 | 李惠玲. 新型电力系统背景下西部送端直流电网及系统运行特性[J]. 中国电力, 2023, 56 (8): 166- 174. | 
| LI Huiling. Sending-terminal DC power grid in Eestern China and its operation characteristics in the context of new power system[J]. Elecric Power, 2023, 56 (8): 166- 174. | |
| 3 | 徐文哲, 张哲任, 徐政. 适用于大规模纯新能源发电基地送出的混合式直流输电系统[J]. 中国电力, 2023, 56 (4): 17- 27. | 
| XU Wenzhe, ZHANG Zheren, XU Zheng. A hybrid HVDC topology suitable for large-scale pure clean energy power base transmission[J]. Elecric Power, 2023, 56 (4): 17- 27. | |
| 4 | 李康, 黄萌, 查晓明, 等. 高压直流输电系统可靠性分析方法综述[J]. 电力系统保护与控制, 2024, 52 (9): 174- 187. | 
| LI Kang, HUANG Meng, ZHA Xiaoming, et al. An overview of reliability analysis methods for an HVDC transmission system[J]. Power System Protection and Control, 2024, 52 (9): 174- 187. | |
| 5 |  
											LI D D, YE X Y, YANG F, et al. Frequency compensation of VSC-HVDC combined with inertia simulation: a passivity-based control approach[J]. Electric Power Systems Research, 2024, 229, 110160. 
																							 DOI  | 
										
| 6 |  
											XING P X, YANG Y H, PENG J S, et al. Analysis of VSC-HVDC support capability for power grids with large-scale renewable energy and multi-infeed HVDC links[J]. Energy Reports, 2023, 9, 1084- 1091. 
																							 DOI  | 
										
| 7 |  
											LI C S, ZHANG X W, HE P, et al. Adaptive droop control of VSC-MTDC system based on virtual inertia[J]. Electronics, 2023, 12 (10): 2324. 
																							 DOI  | 
										
| 8 | 李从善, 甄子凯, 和萍, 等. 风电与多端柔性直流输电系统自适应分频协调控制策略研究[J]. 电力科学与技术学报, 2024, 39 (1): 65- 73, 92. | 
| LI Congshan, ZHEN Zikai, HE Ping, et al. Research on adaptive frequency division coordinated control strategy for wind power and multi terminal flexible HVDC transmission system[J]. Journal of Electric Power Science and Technology, 2024, 39 (1): 65- 73, 92. | |
| 9 | 郭家浩, 樊艳芳, 侯俊杰. 基于电流行波突变特性的多端柔性直流线路纵联保护[J]. 电力系统保护与控制, 2023, 51 (18): 31- 42. | 
| GUO Jiahao, FAN Yanfang, HOU Junjie. Pilot protection method for multi terminal flexible DC lines based on current traveling wave mutation characteristics[J]. Power System Protection and Control, 2023, 51 (18): 31- 42. | |
| 10 | YANG M, PEI X J, ZHANG M, et al. An improved master-slave control strategy for automatic DC voltage control under the master station failure in MTDC system[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 11(2): 1530–1541. | 
| 11 |  
											CHANDIO R H, CHACHAR F A, SOOMRO J B, et al. Control and protection of MMC-based HVDC systems: a review[J]. Energy Reports, 2023, 9, 1571- 1588. 
																							 DOI  | 
										
| 12 | 伊尹, 邓卫, 曹欣, 等. 主从控制模式下低压多端直流系统稳定性研究[J]. 太阳能学报, 2022, 43 (11): 482- 492. | 
| YI Yin, DENG Wei, CAO Xin, et al. Study on stability of low voltage multi-terminal DC system under master-slave control mode[J]. Acta Energiae Solaris Sinica, 2022, 43 (11): 482- 492. | |
| 13 |  
											WANG Y Z, LI B, ZHOU Z X, et al. DC voltage deviation-dependent voltage droop control method for VSC-MTDC systems under large disturbances[J]. IET Renewable Power Generation, 2020, 14 (5): 891- 896. 
																							 DOI  | 
										
| 14 | 付媛, 邵馨玉, 李浩. 直流配电网的暂态电压稳定控制策略[J]. 高电压技术, 2021, 47 (4): 1354- 1362. | 
| FU Yuan, SHAO Xinyu, LI Hao. Transient voltage stability control strategy of DC distribution network[J]. High Voltage Engineering, 2021, 47 (4): 1354- 1362. | |
| 15 |  
											LI C S, ZHANG X W, HE P, et al. Improved coordinated control strategy for VSC-MTDC system with DC voltage secondary regulation[J]. Frontiers in Energy Research, 2024, 12, 1363267. 
																							 DOI  | 
										
| 16 | 刘昊宇, 刘崇茹, 郑乐, 等. 直流电压准无差修正的VSC-MTDC系统协同优化下垂控制[J]. 电力系统自动化, 2022, 46 (6): 117- 126. | 
| LIU Haoyu, LIU Chongru, ZHENG Le, et al. Cooperative optimal droop control for VSC-MTDC system with quasi non-error DC voltage regulation[J]. Automation of Electric Power Systems, 2022, 46 (6): 117- 126. | |
| 17 | 成龙, 金国彬, 王利猛, 等. 考虑功率裕度和电压偏差的多端直流配电网自组织下垂控制[J]. 电力系统自动化, 2019, 43 (23): 81- 89. | 
| CHENG Long, JIN Guobin, WANG Limeng, et al. Self-organizing droop control of multi-terminal DC distribution network considering power margin and voltage deviation[J]. Automation of Electric Power Systems, 2019, 43 (23): 81- 89. | |
| 18 | 李周, 李亚州, 陆于平, 等. 多端柔性直流电网主动功率平衡协调控制策略[J]. 电力系统自动化, 2019, 43 (17): 117- 124. | 
| LI Zhou, LI Yazhou, LU Yuping, et al. Active power balance oriented coordinating control strategy for VSC-MTDC system[J]. Automation of Electric Power Systems, 2019, 43 (17): 117- 124. | |
| 19 | 陈厚合, 齐文博, 姜涛, 等. 提升海上风电经VSC-MTDC接入的低惯量系统频率稳定综合控制策略[J]. 电力自动化设备, 2022, 42 (8): 103- 110. | 
| CHEN Houhe, QI Wenbo, JIANG Tao, et al. Integrated control strategy for improving frequency stability of low inertia system connecting to offshore wind power via VSC-MTDC[J]. Electric Power Automation Equipment, 2022, 42 (8): 103- 110. | |
| 20 | LIU C R, LIU H Y, JIANG S W, et al. Dynamic frequency support and DC voltage regulation approach for VSC-MTDC systems[J]. CSEE Journal of Power and Energy Systems, 2023, 9 (2): 645- 658. | 
| 21 |  
											XING C, LIU M Q, PENG J Z, et al. Frequency stability control strategy for voltage source converter-based multi-terminal DC transmission system[J]. Energies, 2024, 17 (5): 1195. 
																							 DOI  | 
										
| 22 | 于国星, 宋蕙慧, 马广富, 等. 含海上风电场的VSC-MTDC系统参与电网调频的顺序控制方法[J]. 电力系统自动化, 2021, 45 (4): 123- 132. | 
| YU Guoxing, SONG Huihui, MA Guangfu, et al. Sequence control method for VSC-MTDC system with offshore wind farm participating in frequency regulation of power grid[J]. Automation of Electric Power Systems, 2021, 45 (4): 123- 132. | |
| 23 | 李亚州. 多端柔性直流输电系统交直流电压稳定控制策略研究[D]. 南京: 东南大学, 2019. | 
| LI Yazhou. Research on AC and DC voltage stability control strategies for VSC-MTDC system. Nanjing: Southeast University, 2019. | |
| 24 | 董志国, 徐全海, 陈琦, 等. 参与电网调频的多端柔性直流输电系统改进下垂控制策略[J]. 南方电网技术, 2024, 18 (3): 146- 155. | 
| DONG Zhiguo, XU Quanhai, CHEN Qi, et al. Improved droop control strategy involved in power grid frequency regulation for VSC-MTDC transmission systems[J]. Southern Power System Technology, 2024, 18 (3): 146- 155. | |
| 25 | 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 电能质量 电力系统频率偏差: GB/T 15945—2008[S]. 北京: 中国标准出版社, 2008. | 
| Viewed | ||||||
| 
										Full text | 
									
										 | 
								|||||
| 
										Abstract | 
									
										 | 
								|||||
