Electric Power ›› 2024, Vol. 57 ›› Issue (8): 206-213.DOI: 10.11930/j.issn.1004-9649.202310020
• Power System • Previous Articles Next Articles
Zhiheng KONG1(), Chong TAN1(
), Peiyao TANG1, Chengbo HU2, Min ZHENG1
Received:
2023-10-09
Accepted:
2024-01-07
Online:
2024-08-23
Published:
2024-08-28
Supported by:
Zhiheng KONG, Chong TAN, Peiyao TANG, Chengbo HU, Min ZHENG. Numerical Recognition Algorithm for Power Equipment Monitoring Based on Light-Resnet Convolutional Neural Network[J]. Electric Power, 2024, 57(8): 206-213.
网络架构 | 权重大小 | |||||
CapsNet | 99.99 | 99.23 | ||||
Light-Resnet | 100.00 | 98.79 | ||||
MOCNN | 99.94 | 96.38 |
Table 1 Performance comparison of different network architectures
网络架构 | 权重大小 | |||||
CapsNet | 99.99 | 99.23 | ||||
Light-Resnet | 100.00 | 98.79 | ||||
MOCNN | 99.94 | 96.38 |
损失函数 | ||||
CEL | 99.97 | 98.45 | ||
HRC | 99.99 | 97.82 | ||
D-ADD | 100.00 | 98.79 | ||
AVG | 99.99 | 97.95 |
Table 2 Performance comparison of multiple loss functions
损失函数 | ||||
CEL | 99.97 | 98.45 | ||
HRC | 99.99 | 97.82 | ||
D-ADD | 100.00 | 98.79 | ||
AVG | 99.99 | 97.95 |
位置 | Edr | Edd | Esend | Esensor | Eother | E | ||||||
边 | 0 | 0 | 49.624 | 1.462 | 6.819 | 57.905 | ||||||
端 | 2.218 | 2.878 | 2.709 | 1.517 | 6.427 | 15.749 | ||||||
边端协同 | 2.211 | 0 | 2.721 | 1.514 | 6.599 | 13.045 |
Table 3 Terminal-side power consumption comparison 单位:J
位置 | Edr | Edd | Esend | Esensor | Eother | E | ||||||
边 | 0 | 0 | 49.624 | 1.462 | 6.819 | 57.905 | ||||||
端 | 2.218 | 2.878 | 2.709 | 1.517 | 6.427 | 15.749 | ||||||
边端协同 | 2.211 | 0 | 2.721 | 1.514 | 6.599 | 13.045 |
1 | 李博, 高志远. 人工智能技术在智能电网中的应用分析和展望[J]. 中国电力, 2017, 50 (12): 136- 140. |
LI Bo, GAO Zhiyuan. Analysis and prospect on the application of artificial intelligence technologies in smart grid[J]. Electric Power, 2017, 50 (12): 136- 140. | |
2 | 白钒, 胡杰, 何鹏, 等. 基于物联网技术的智能电网基础设施建设数字化管理平台研究[J]. 机械与电子, 2022, 40 (10): 77- 80. |
BAI Fan, HU Jie, HE Peng, et al. Research on digital management platform for smart grid infrastructure construction based on Internet of Things technology[J]. Machinery & Electronics, 2022, 40 (10): 77- 80. | |
3 | ZHAO S T, LI B S, YUAN J S, et al. Research on remote meter automatic reading based on computer vision[C]//2005 IEEE/PES Transmission & Distribution Conference & Exposition: Asia and Pacific. Dalian, China. IEEE, 2005: 1–4. |
4 | EDWARD V C P. Support vector machine based automatic electric meter reading system[C]//2013 IEEE International Conference on Computational Intelligence and Computing Research. Enathi, India. IEEE, 2013: 1–5. |
5 | RODRİGUEZ M, BERDUGO G, JABBA D, et al. HD_MR: a new algorithm for number recognition in electrical meters[J]. Turkish Journal of Electrical Engineering & Computer Sciences, 2014, 22, 87- 96. |
6 | 陈英, 李磊, 汪文源, 等. 家用水表字符的识别算法研究[J]. 现代电子技术, 2018, 41 (18): 99- 103. |
CHEN Ying, LI Lei, WANG Wenyuan, et al. Research on character recognition algorithm for domestic water meter[J]. Modern Electronics Technique, 2018, 41 (18): 99- 103. | |
7 | GÓMEZ L, RUSIÑOL M, KARATZAS D. Cutting sayre’s knot: reading scene text without segmentation. application to utility meters[C]//2018 13th IAPR International Workshop on Document Analysis Systems (DAS). Vienna, Austria. IEEE, 2018: 97-102. |
8 |
YANG F, JIN L W, LAI S X, et al. Fully convolutional sequence recognition network for water meter number reading[J]. IEEE Access, 2019, 7, 11679- 11687.
DOI |
9 | DA SILVA MARQUES R C, COSTA SERRA A, FERREIRA FRANÇA J V, et al. Image-based electric consumption recognition via multi-task learning[C]//2019 8th Brazilian Conference on Intelligent Systems (BRACIS). Salvador, Brazil. IEEE, 2019: 419–424. |
10 | 龚安, 张洋, 唐永红. 基于YOLOv3网络的电能表示数识别方法[J]. 计算机系统应用, 2020, 29 (1): 196- 202. |
GONG An, ZHANG Yang, TANG Yonghong. Automatic reading method of electric energy meter based on YOLOv3[J]. Computer Systems & Applications, 2020, 29 (1): 196- 202. | |
11 | 顾允迪, 徐望明, 何钦. 字轮式仪表智能图像抄表系统的设计[J]. 液晶与显示, 2023, 38 (7): 985- 996. |
GU Yundi, XU Wangming, HE Qin. Design of image-based intelligent meter reading system for wheel meters[J]. Chinese Journal of Liquid Crystals and Displays, 2023, 38 (7): 985- 996. | |
12 | 吉训生, 谭凯凯. 基于卷积神经网络的水表读数识别方法[J]. 传感器与微系统, 2020, 39 (12): 130- 133. |
JI Xunsheng, TAN Kaikai. Water meter character recognition method based on CNN[J]. Transducer and Microsystem Technologies, 2020, 39 (12): 130- 133. | |
13 | HAN D, KIM H. A number recognition system with memory optimized convolutional neural network for smart metering devices[C]//2018 International Conference on Electronics, Information, and Communication (ICEIC). Honolulu, HI, USA. IEEE, 2018: 1–4. |
14 |
LI C S, SU Y K, YUAN R, et al. Light-weight spliced convolution network-based automatic water meter reading in smart city[J]. IEEE Access, 2019, 7, 174359- 174367.
DOI |
15 | JUNAGADE S, JAIN P, SARANGI S, et al. Digital display recognition towards connected sensing systems for precision agriculture[C]//2021 IEEE Global Humanitarian Technology Conference (GHTC). Seattle, WA, USA. IEEE, 2021: 155–162. |
16 |
XIU H, HE J, ZHANG X T, et al. HRC-mCNNs: a hybrid regression and classification multibranch CNNs for automatic meter reading with smart shell[J]. IEEE Internet of Things Journal, 2022, 9 (24): 25752- 25766.
DOI |
17 | FAN Z Z, SHI L R, XI C, et al. Real time power equipment meter recognition based on deep learning[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71, 5017015. |
18 |
DONG Z P, GAO Y, YAN Y H, et al. Vector detection network: an application study on robots reading analog meters in the wild[J]. IEEE Transactions on Artificial Intelligence, 2021, 2 (5): 394- 403.
DOI |
19 | CIPOLLA R, GAL Y, KENDALL A. Multi-task learning using uncertainty to weigh losses for scene geometry and semantics[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT, USA. IEEE, 2018: 7482–7491. |
20 | EVGENIOU T, PONTIL M. Regularized multi: task learning[C]//Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining. Seattle, WA, USA. ACM, 2004: 109–117. |
21 | CARUANA R. Multitask learning[M]//Learning to Learn. Boston, MA: Springer US, 1998: 95–133. |
22 | HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, NV, USA. IEEE, 2016: 770–778. |
23 | HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Identity mappings in deep residual networks [C]//Computer Vision – ECCV 2016. Cham: Springer International Publishing, 2016, 630: 45. |
24 | IOFFE S, SZEGEDY C. Batch normalization: accelerating deep network training by reducing internal covariate shift[C]//Proceedings of the 32nd International Conference on Machine Learning - Volume 37. Lille, France. ACM, 2015: 448–456. |
25 | GLOROT X, BORDES A, BENGIO Y. Deep sparse rectifier neural networks[J]. Journal of Machine Learning Research, 2011, 15, 315- 323. |
26 | SABOUR S, FROSST N, HINTON G E. Dynamic routing between capsules[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach, California, USA. ACM, 2017: 3859–3869. |
[1] | Zongchao YU, Ming WEN, Xianghua LI, Xintao XIE, Hongming YANG. Effective Development and Management Strategy for Distributed Smart Grids Based on Collective Intelligence [J]. Electric Power, 2024, 57(10): 57-68. |
[2] | Yan WU, Guangzheng WANG. Review and Prospect of Distribution Network Resilience Assessment and Improvement Based on CiteSpace [J]. Electric Power, 2023, 56(12): 100-112, 137. |
[3] | XU Jie, WANG Shinong. A Particle Swarm Optimization Algorithm for Smart Grid Voltage Collapse Path [J]. Electric Power, 2023, 56(1): 142-149. |
[4] | LI Feng, PENG Huimin, YUAN Huling, WAN Fangru, HUANG Tiangang, LI Wei. Application Function Design for UPFC Online Operation Optimization Decision-making [J]. Electric Power, 2021, 54(7): 76-82. |
[5] | SHE Rui, ZHANG Ningchi, WANG Yanru, GUO Dandan, MA Wenjie, LIU Hui, ZHANG Jie. Research on Cognitive Radio Non-orthogonal Multiple Access System in 5G Communications Oriented to Ubiquitous Power Internet of Things [J]. Electric Power, 2021, 54(5): 35-45. |
[6] | ZENG Yonghao, FAN Xinming, PENG Yuanquan, LI Xin, ZHANG Ziqi, SONG Guanyu. Operation and Application of Flexible Distribution Multi-state Switch With Three Teminals [J]. Electric Power, 2021, 54(11): 97-103. |
[7] | CHAI Bin, LIU Fei, JIANG Pingkai, JIANG Xiuchen, HUANG Xingyi. Piezoelectric Materials and Devices for Monitoring and Diagnosis of Power Equipment [J]. Electric Power, 2021, 54(10): 105-116. |
[8] | MA Jianzhong, HU Kaibo, YU Lifeng. Smart Grid Control Attack Defense Based on Semantic Analysis in Industrial Control Operation and Maintenance [J]. Electric Power, 2020, 53(9): 214-220. |
[9] | LI Bo, FANG Tong. Application and Prospect of Beidou Navigation Satellite System (BDS) in Smart Grid [J]. Electric Power, 2020, 53(8): 107-116. |
[10] | JIA Huibin, GAI Yonghe, LI Baogang, ZHENG Hongda. Power Communication Network Recovery from Large-Scale Failures Based on Reinforcement Learning [J]. Electric Power, 2020, 53(6): 34-40. |
[11] | QIAN Bin, CAI Ziwen, XIAO Yong, YANG Jinfeng, DONG Xingyin, GU Ke. Data Collaborative Detection Scheme of Electric Metering System Based on Edge Computing [J]. Electric Power, 2019, 52(11): 145-152. |
[12] | ZHOU Jing, SUN Yuanyuan, HU Ziwei, LU Lifeng, LIU Guojun. Discussion on Smart Grid Information &Communication Architecture Evolution [J]. Electric Power, 2018, 51(3): 131-135. |
[13] | WANG Kaijun, ZHENG Weimin, SUN Ke, JIN Kangmeng, ZHANG Pei. Smart Grid Value-Added Business Survey and Customized Service [J]. Electric Power, 2018, 51(2): 67-74. |
[14] | HU Feixiong, ZHOU Baorong, LU Siyu. The Practice and Perspective of Promoting Renewable Energy Integration in China Southern Power Grid [J]. Electric Power, 2018, 51(1): 22-28. |
[15] | HUANG Xiaoli, LI Zhenjie, ZHANG Tao, GU Han, CHEN Guodong, ZONG Zhigang, DUAN Wei. Study on the Energy Development Demand and Smart Grid Construction Under New Situation [J]. Electric Power, 2017, 50(9): 25-30. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||