Electric Power ›› 2020, Vol. 53 ›› Issue (6): 34-40.DOI: 10.11930/j.issn.1004-9649.201907078
Previous Articles Next Articles
JIA Huibin, GAI Yonghe, LI Baogang, ZHENG Hongda
Received:
2019-07-09
Revised:
2019-08-26
Published:
2020-06-05
Supported by:
JIA Huibin, GAI Yonghe, LI Baogang, ZHENG Hongda. Power Communication Network Recovery from Large-Scale Failures Based on Reinforcement Learning[J]. Electric Power, 2020, 53(6): 34-40.
[1] 谢迎军, 王玉亭, 李炜, 等. 电力企业通信网运行质量评估指标体系[J]. 中国电力, 2017, 50(10): 22-27 XIE Yingjun, WANG Yuting, LI Wei, et al. Indicator system for operation quality of electric power communication network[J]. Electric Power, 2017, 50(10): 22-27 [2] CHIARADONNA S, DI GIANDOMENICO F, MASETTI G. Analyzing the impact of failures in the electric power distribution grid[C]//2016 Seventh Latin-American Symposium on Dependable Computing (LADC). Cali, Colombia. IEEE, 2016: 99-108. [3] LI H T, LI Q, JIANG Y, et al. A declarative failure recovery system in software defined networks[C]//2016 IEEE International Conference on Communications (ICC). Kuala Lumpur, Malaysia. IEEE, 2016. [4] BERNSTEIN A, BIENSTOCK D, HAY D, et al. Power grid vulnerability to geographically correlated failures: Analysis and control implications[C]//IEEE INFOCOM 2014 - IEEE Conference on Computer Communications. Toronto, ON, Canada. IEEE, 2014: 2634-2642. [5] HASELTINE C, EMAN EMANE S. Prediction of power grid failure using neural network learning[C]//2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA). Cancun, Mexico. IEEE, 2017: 505−510. [6] FAN W L, LIU Z G, PING H, et al. Cascading failure model in power grids using the complex network theory[J]. IET Generation, Transmission & Distribution, 2016, 10(15): 3940-3949. [7] 韩丽芳, 胡博文, 杨军, 等. 基于攻击预测的电力CPS安全风险评估[J]. 中国电力, 2019, 52(1): 48-56 HAN Lifang, HU Bowen, YANG Jun, et al. A new security risk assessment method for cyber physical power system based on attack prediction[J]. Electric Power, 2019, 52(1): 48-56 [8] 范君军, 陈智超, 陈涛, 等. 电网应急演练评估及其指标体系[J]. 中国电力, 2017, 50(11): 116-120 FAN Junjun, CHEN Zhichao, CHEN Tao, et al. Power grid emergency drill evaluation and the index system[J]. Electric Power, 2017, 50(11): 116-120 [9] 刁浩然, 杨明, 陈芳, 等. 基于强化学习理论的地区电网无功电压优化控制方法[J]. 电工技术学报, 2015, 30(12): 408-414 DIAO Haoran, YANG Ming, CHEN Fang, et al. Reactive power and voltage optimization control approach of the regional power grid based on reinforcement learning theory[J]. Transactions of China Electrotechnical Society, 2015, 30(12): 408-414 [10] MORADI M. A centralized reinforcement learning method for multi-agent job scheduling in Grid[C]//2016 6th International Conference on Computer and Knowledge Engineering (ICCKE). Mashhad, Iran. IEEE, 2016. [11] YAN J, HE H B, ZHONG X N, et al. Q-learning-based vulnerability analysis of smart grid against sequential topology attacks[J]. IEEE Transactions on Information Forensics and Security, 2017, 12(1): 200-210. [12] 汪洋, 高晗星, 周生平, 等. 融合拓扑及业务特性的电力通信网关键节点识别[J]. 中国电力, 2018, 51(10): 111-118 WANG Yang, GAO Hanxing, ZHOU Shengping, et al. Critical node identification for electric power communication network based on characteristics of topology and services[J]. Electric Power, 2018, 51(10): 111-118 [13] 陈国炎, 张哲, 尹项根, 等. 广域后备保护通信模式及其性能评估[J]. 中国电机工程学报, 2014, 34(1): 186-196 CHEN Guoyan, ZHANG Zhe, YIN Xianggen, et al. Wide area backup protection communication mode and its performance evaluation[J]. Proceedings of the CSEE, 2014, 34(1): 186-196 [14] 余才志. 必经节点的最短路径算法研究 [D]. 天津: 天津大学, 2016. YU Caizhi. The research on the shortest path algorithm for the specified node[D]. Tianjin: Tianjin University, 2016. [15] 康文雄, 许耀钊. 节点约束型最短路径的分层Dijkstra算法[J]. 华南理工大学学报(自然科学版), 2017, 45(1): 66-73 KANG Wenxiong, XU Yaozhao. A hierarchical dijkstra algorithm for solving shortest path from constrained nodes[J]. Journal of South China University of Technology(Natural Science Edition), 2017, 45(1): 66-73 [16] 杨春霞. 网络大规模毁坏后的渐进恢复机制研究[D]. 成都: 电子科技大学, 2012. [17] PILEROOD A E, HEYDARI M, MAZDEH M M. A two-stage greedy heuristic for a flowshop scheduling problem under time-of-use electricity tariffs[J]. South African Journal of Industrial Engineering, 2018,29(1):143-154. [18] 何瑞江, 胡志坚, 李燕, 等. 含分布式电源配电网故障区段定位的线性整数规划方法[J]. 电网技术, 2018, 42(11): 3684-3692 HE Ruijiang, HU Zhijian, LI Yan, et al. Fault section location method for DG-DNs based on integer linear programming[J]. Power System Technology, 2018, 42(11): 3684-3692 [19] 崔文岩, 孟相如, 杨欢欢, 等. QoS约束的链路故障多备份路径恢复算法[J]. 电子与信息学报, 2016, 38(8): 1850-1857 CUI Wenyan, MENG Xiangru, YANG Huanhuan, et al. Link failure recovery algorithm based on multiple backup paths with QoS constraint[J]. Journal of Electronics & Information Technology, 2016, 38(8): 1850-1857 [20] 陈晓玲, 杨军, 罗超, 等. 一种大电网潮流转移路径快速搜索方法[J]. 电网技术, 2015, 39(4): 1045-1052 CHEN Xiaoling, YANG Jun, LUO Chao, et al. A high-speed searching method for power flow transferring paths in large power grid[J]. Power System Technology, 2015, 39(4): 1045-1052 |
[1] | ZHOU Feihang, WANG Hao, WANG Haili, WANG Meng, JIN Yaojie, LI Zhongchun, ZHANG Zhongde, WANG Peng. Multi-entity Behaviors in Electricity-Carbon-Green Certificate Coupled Markets Based on Multi-agent Reinforcement Learning [J]. Electric Power, 2025, 58(4): 44-55. |
[2] | WANG Guanchao, HUO Yuchong, LI Qun, LI Qiang. Power Optimization of Wind Farms Based on Improved Jensen Model and Deep Reinforcement Learning [J]. Electric Power, 2025, 58(4): 78-89. |
[3] | Yi ZENG, Yi ZHOU, Jixiang LU, Liangcai ZHOU, Ningkai TANG, Hong LI. Voltage Control Based on Multi-Agent Safe Deep Reinforcement Learning [J]. Electric Power, 2025, 58(2): 111-117. |
[4] | Zhiheng KONG, Chong TAN, Peiyao TANG, Chengbo HU, Min ZHENG. Numerical Recognition Algorithm for Power Equipment Monitoring Based on Light-Resnet Convolutional Neural Network [J]. Electric Power, 2024, 57(8): 206-213. |
[5] | Hao JIAO, Yanyan YIN, Chen WU, Jian LIU, Chunlei XU, Xian XU, Guoqiang SUN. Coordinated Optimization of Active and Reactive Power of Active Distribution Network Based on Safety Reinforcement Learning [J]. Electric Power, 2024, 57(3): 43-50. |
[6] | Chaoying LI, Qinliang TAN. Market Trading Strategy for Thermal Power Enterprise in New Power System Based on Agent Modeling [J]. Electric Power, 2024, 57(2): 212-225. |
[7] | Tianling HE, Libo CAI. Implementation of Power Communication Faults and Maintenance Aided Decision-Making Coupled with Power Network Service Constraints [J]. Electric Power, 2024, 57(12): 178-187. |
[8] | Songping XUE, Dequan GAO, Ziyan ZHAO, Yuqian LIN, Zejing GUANG, Dawei ZHANG. Routing Algorithm for Power Communication Networks Based on Serivce Differentiated Transmission Requirements [J]. Electric Power, 2024, 57(11): 183-190. |
[9] | Zongchao YU, Ming WEN, Xianghua LI, Xintao XIE, Hongming YANG. Effective Development and Management Strategy for Distributed Smart Grids Based on Collective Intelligence [J]. Electric Power, 2024, 57(10): 57-68. |
[10] | Chao ZHANG, Dongmei ZHAO, Yu JI, Ying ZHANG. Real Time Optimal Dispatch of Virtual Power Plant Based on Improved Deep Q Network [J]. Electric Power, 2024, 57(1): 91-100. |
[11] | PENG Linyu, LIU Xu, TANG Wei, LIU Qing, FANG Hao, ZHANG Guanghui. Adversarial Reinforcement Learning-Based Converged Communication Efficiency Improvement Method for Power Distribution Network [J]. Electric Power, 2023, 56(9): 127-133. |
[12] | SHI Wenzhe, LI Bingjie, YOU Peipei, ZHANG Ling. Optimization Strategy of Building Energy System Based on Deep Reinforcement Learning [J]. Electric Power, 2023, 56(6): 114-122. |
[13] | SONG Weiye, LIU Lingyue, YAN Jie, WANG Hangyu, HE Shukai, HAN Shuang, WANG Minghui, LIU Yongqian. Self-evolving Power Smooth Control Method for Offshore Wind Power Cluster Based On Deep Reinforcement Learning [J]. Electric Power, 2023, 56(3): 36-46. |
[14] | ZHANG Shuxing, MA Chi, YANG Zhixue, WANG Yao, WU Hao, REN Zhouyang. Deep Deterministic Policy Gradient Algorithm Based Wind-Photovoltaic-Storage Hybrid System Joint Dispatch [J]. Electric Power, 2023, 56(2): 68-76. |
[15] | Yan WU, Guangzheng WANG. Review and Prospect of Distribution Network Resilience Assessment and Improvement Based on CiteSpace [J]. Electric Power, 2023, 56(12): 100-112, 137. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||