Electric Power ›› 2024, Vol. 57 ›› Issue (3): 43-50.DOI: 10.11930/j.issn.1004-9649.202311065
• New Type Distribution Network Driven by Digital Technology • Previous Articles Next Articles
					
													Hao JIAO1(
), Yanyan YIN2(
), Chen WU3(
), Jian LIU1, Chunlei XU3, Xian XU3, Guoqiang SUN2
												  
						
						
						
					
				
Received:2023-11-15
															
							
															
							
																	Accepted:2024-02-13
															
							
																	Online:2024-03-23
															
							
							
																	Published:2024-03-28
															
							
						Supported by:Hao JIAO, Yanyan YIN, Chen WU, Jian LIU, Chunlei XU, Xian XU, Guoqiang SUN. Coordinated Optimization of Active and Reactive Power of Active Distribution Network Based on Safety Reinforcement Learning[J]. Electric Power, 2024, 57(3): 43-50.
| MT 节点  | (kV·A)  | (元·(kW·h)–1)  | (元·(kW·h)–1)  | |||||||||||
| 25 | 825 | 0.8 | 0 | 0.20 | 0 | |||||||||
| 95 | 625 | 0.8 | 0 | 0.15 | 0 | |||||||||
| 115 | 625 | 0.8 | 0 | 0.18 | 0 | |||||||||
| DESS 节点  | (kW·h)  | (kW·h)  | kW  | kW  | (元·(kW·h)–1)  | |||||||||
| 21, 57 | 2 000 | 200 | 500 | 500 | 0.98 | 0.1 | ||||||||
Table 1 DESS and MT equipment parameters
| MT 节点  | (kV·A)  | (元·(kW·h)–1)  | (元·(kW·h)–1)  | |||||||||||
| 25 | 825 | 0.8 | 0 | 0.20 | 0 | |||||||||
| 95 | 625 | 0.8 | 0 | 0.15 | 0 | |||||||||
| 115 | 625 | 0.8 | 0 | 0.18 | 0 | |||||||||
| DESS 节点  | (kW·h)  | (kW·h)  | kW  | kW  | (元·(kW·h)–1)  | |||||||||
| 21, 57 | 2 000 | 200 | 500 | 500 | 0.98 | 0.1 | ||||||||
| 参数 | 数值 | |
| 0.995 | ||
| Critic网络学习率 | 0.001 | |
| Actor网络学习率 | 0.000 5 | |
| 0.000 1 | ||
| 0 | ||
| 0.02 | ||
| 0.1 | ||
| 经验回放池大小 | 50 000 | 
Table 2 Parameter settings of the proposed method
| 参数 | 数值 | |
| 0.995 | ||
| Critic网络学习率 | 0.001 | |
| Actor网络学习率 | 0.000 5 | |
| 0.000 1 | ||
| 0 | ||
| 0.02 | ||
| 0.1 | ||
| 经验回放池大小 | 50 000 | 
| 算法 | 离线训练时间/h | 在线测试时间/s | ||
| PD-DDPG | 12.638 | 0.223 | ||
| DDPG( | 11.050 | 0.236 | ||
| DDPG( | 10.626 | 0.229 | ||
| DDPG( | 10.462 | 0.232 | 
Table 3 Training and testing time of different algorithms
| 算法 | 离线训练时间/h | 在线测试时间/s | ||
| PD-DDPG | 12.638 | 0.223 | ||
| DDPG( | 11.050 | 0.236 | ||
| DDPG( | 10.626 | 0.229 | ||
| DDPG( | 10.462 | 0.232 | 
| 1 | 王鹤, 王钲淇, 韩皓, 等. 使用蒙特卡罗逐时估算模型的住宅配电网光伏准入容量研究[J]. 东北电力大学学报, 2023, 43 (1): 9- 19, 2, 99. | 
| WANG He, WANG Zhengqi, HAN Hao, et al. Research on photovoltaic hosting capacity of residential distribution network based on Monte Carlo hourly estimation framework[J]. Journal of Northeast Electric Power University, 2023, 43 (1): 9- 19, 2, 99. | |
| 2 | 丁琦欣, 覃洪培, 万灿, 等. 基于机会约束规划的配电网分布式光伏承载能力评估[J]. 东北电力大学学报, 2022, 42 (6): 28- 38. | 
| DING Qixin, QIN Hongpei, WAN Can, et al. Chance-constrained optimization-based distributed photovoltaic hosting capacity assessment of distribution networks[J]. Journal of Northeast Electric Power University, 2022, 42 (6): 28- 38. | |
| 3 | 杨亘烨, 孙荣富, 丁然, 等. 计及光伏多状态调节能力的配电网多时间尺度电压优化[J]. 中国电力, 2022, 55 (3): 105- 114. | 
| YANG Genye, SUN Rongfu, DING Ran, et al. Multi-time scale reactive power and voltage optimization of distribution network considering photovoltaic multi state regulation capability[J]. Electric Power, 2022, 55 (3): 105- 114. | |
| 4 | 白晶, 金广厚, 孙鹤林, 等. 高渗透光伏配电网第三方主体调压辅助服务补偿与获取[J]. 中国电力, 2023, 56 (4): 95- 103. | 
| BAI Jing, JIN Guanghou, SUN Helin, et al. Third-party entity voltage regulation ancillary service compensation and procurement in distribution networks with high-penetration PV[J]. Electric Power, 2023, 56 (4): 95- 103. | |
| 5 | 黄南天, 郭玉, 赵暄远. 计及辐照区间划分的含光伏电源配电网源-荷联合场景生成[J]. 东北电力大学学报, 2023, 43 (5): 78- 84. | 
| HUANG Nantian, GUO Yu, ZHAO Xuanyuan. Combined source-load scenario generation for PV-containing distribution networks with calculation and irradiation interval classification[J]. Journal of Northeast Electric Power University, 2023, 43 (5): 78- 84. | |
| 6 | 祁晓婧. 计及不确定性的主动配电网有功无功联合优化调度技术研究[D]. 南京: 东南大学, 2019. | 
| QI Xiaojing. Research on joint optimal dispatch technology of active and reactive power in active distribution networks considering uncertainty[D]. Nanjing: Southeast University, 2019. | |
| 7 | 王耀翔, 戴朝波, 杨志昌, 等. 考虑风电机组无功潜力的风电场无功电压控制策略[J]. 电力系统保护与控制, 2022, 50 (24): 83- 90. | 
| WANG Yaoxiang, DAI Chaobo, YANG Zhichang, et al. Voltage control strategy for a wind farm considering the reactive capability of DFIGs[J]. Power System Protection and Control, 2022, 50 (24): 83- 90. | |
| 8 | 马君亮, 王智冬, 张述铭. 考虑县域光伏潜力评估的源网荷储协同规划[J]. 东北电力大学学报, 2023, 43 (3): 82- 90. | 
| MA Junliang, WANG Zhidong, ZHANG Shuming. Collaborative planning of source-grid-load-storage considering County PV potential assessment[J]. Journal of Northeast Electric Power University, 2023, 43 (3): 82- 90. | |
| 9 | 马跃, 孟润泉, 魏斌, 等. 考虑阶梯式碳交易机制的微电网两阶段鲁棒优化调度[J]. 电力系统保护与控制, 2023, 51 (10): 22- 33. | 
| MA Yue, MENG Runquan, WEI Bin, et al. Two-stage robust optimal scheduling of a microgrid with a stepped carbon trading mechanism[J]. Power System Protection and Control, 2023, 51 (10): 22- 33. | |
| 10 | 孙端航, 李本新. 考虑风电不确定性的电网状态检修策略[J]. 东北电力大学学报, 2023, 43 (4): 65- 73. | 
| SUN Duanhang, LI Benxin. Condition-based maintenance scheduling for power transmission system considering wind power uncertainty[J]. Journal of Northeast Electric Power University, 2023, 43 (4): 65- 73. | |
| 11 | 朱建昆, 高红均, 贺帅佳, 等. 考虑VSC与光-储-充协同配置的交直流混合配电网规划[J]. 智慧电力, 2023, 51 (11): 7- 14. | 
| ZHU Jiankun, GAO Hongjun, HE Shuaijia, et al. AC-DC hybrid distribution network planning considering VSC and photovoltaic-storage-charging coordinated configuration[J]. Smart Power, 2023, 51 (11): 7- 14. | |
| 12 | 李笑竹, 王维庆. 基于贝叶斯理论的分布鲁棒优化在储能配置上的应用[J]. 电网技术, 2022, 46 (10): 4001- 4011. | 
| LI Xiaozhu, WANG Weiqing. Application of distributed robust optimization based on bayesian theory in allocation of energy storage[J]. Power System Technology, 2022, 46 (10): 4001- 4011. | |
| 13 | 徐澄莹, 朱旭, 窦真兰, 等. 基于数据驱动鲁棒优化的用户侧综合能源舱低碳规划[J]. 电力建设, 2022, 43 (12): 27- 36. | 
| XU Chengying, ZHU Xu, DOU Zhenlan, et al. Research on low carbon planning based on data driven robust optimization for user-side integrated energy module[J]. Electric Power Construction, 2022, 43 (12): 27- 36. | |
| 14 |  
											KOU P, LIANG D L, WANG C, et al. Safe deep reinforcement learning-based constrained optimal control scheme for active distribution networks[J]. Applied Energy, 2020, 264, 114772. 
																							 DOI  | 
										
| 15 |  
											CHU Y F, WEI Z N, FANG X C, et al. A multiagent federated reinforcement learning approach for plug-In electric vehicle fleet charging coordination in a residential community[J]. IEEE Access, 2022, 10, 98535- 98548. 
																							 DOI  | 
										
| 16 | 戴武昌, 刘艾冬, 申鑫, 等. 基于MADDPG算法的家用电动汽车集群充放电行为在线优化[J]. 东北电力大学学报, 2021, 41 (5): 80- 89. | 
| DAI Wuchang, LIU Aidong, SHEN Xin, et al. Online optimization of charging and discharging behavior of household electric vehicle cluster based on MADDPG algorithm[J]. Journal of Northeast Electric Power University, 2021, 41 (5): 80- 89. | |
| 17 | HOU S R, SALAZAR E M, VERGARA P P, et al. Performance comparison of deep RL algorithms for energy systems optimal scheduling[C]//2022 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe). Novi Sad, Serbia. IEEE, 2022: 1–6. | 
| 18 |  
											LIU H T, WU W C. Two-stage deep reinforcement learning for inverter-based volt-VAR control in active distribution networks[J]. IEEE Transactions on Smart Grid, 2021, 12 (3): 2037- 2047. 
																							 DOI  | 
										
| 19 |  
											GAO Y Q, WANG W, SHI J, et al. Batch-constrained reinforcement learning for dynamic distribution network reconfiguration[J]. IEEE Transactions on Smart Grid, 2020, 11 (6): 5357- 5369. 
																							 DOI  | 
										
| 20 | LILLICRAP T P, HUNT J J, PRITZEL A, et al. Continuous control with deep reinforcement learning[C]//4th International Conference on Learning Representations. San Juan, 2016. | 
| 21 |  
											LI H P, HE H B. Learning to operate distribution networks with safe deep reinforcement learning[J]. IEEE Transactions on Smart Grid, 2022, 13 (3): 1860- 1872. 
																							 DOI  | 
										
| 22 | 季颖, 王建辉. 基于深度强化学习的微电网在线优化调度[J]. 控制与决策, 2022, 37 (7): 1675- 1684. | 
| JI Ying, WANG Jianhui. Microgrid online optimal dispatch based on deep reinforcement learning[J]. Control and Decision-making, 2022, 37 (7): 1675- 1684. | |
| 23 | 兰飞, 林立成, 黎静华. 基于改进变分模态分解和信息融合的故障选线[J]. 东北电力大学学报, 2022, 42 (5): 1- 14. | 
| LAN Fei, LIN Licheng, LI Jinghua. Fault line selection based on improved variational mode decomposition and information fusion[J]. Journal of Northeast Electric Power University, 2022, 42 (5): 1- 14. | |
| 24 | DING Y, LAVAEI J. Provably efficient primal-dual reinforcement learning for cmdps with non-stationary objectives and constraints[C]// Proceedings of the AAAI Conference on Artificial Intelligence. 2023, 37(6): 7396–7404. | 
| 25 | PASZKE A, GROSS S, MASSA F, et al. Pytorch: an imperative style, high-performance deep learning library[J]. Advances in Neural Information Processing Systems, 2019, 32, 8024- 8035. | 
| [1] | WANG Shiqian, HAN Ding, WANG Nan, BAI Hongkun, SONG Dawei, HU Caihong. Cooperative Scheduling of Active Distribution Network Based on Two Layer Master Slave Game [J]. Electric Power, 2025, 58(9): 105-114. | 
| [2] | BAO Hongyan, LIU Jicheng, LIU Ziyi, SUN Jiakang. A Two-layer Optimization Model for Active Distribution Networks Considering Electric-Hydrogen Hybrid Energy Storage Capacity Allocation [J]. Electric Power, 2025, 58(10): 27-38. | 
| [3] | Pengfei FAN, Baoqin LI, Jiangwei HOU, Rong LI, Chongming SONG, Kaijun LIN. Economic Capacity Assessment of Renewables in Distribution Networks [J]. Electric Power, 2024, 57(7): 196-202. | 
| [4] | Jiawu WANG, Dianyun ZHAO, Changfeng LIU, Kang CHEN, Yumin ZHANG. Analytical Target Cascading Based Active Distribution Network Level Multi-agent Autonomous Collaborative Optimization [J]. Electric Power, 2024, 57(7): 214-226. | 
| [5] | Tiecheng LI, Hui FAN, Weiming ZHANG, Xianzhi WANG, Yihong ZHANG, Zhihui DAI. Pilot Protection of New Energy Transmission Line in Active Distribution Network Based on 5G Communication [J]. Electric Power, 2024, 57(11): 139-150. | 
| [6] | Xundong GONG, Weijia GUO, Chen YANG, Li ZHOU, Xiaofeng DONG, Junpeng ZHU. Multi-stage Fault Recovery Strategy for Active Distribution Networks Based on Dynamic Islanding [J]. Electric Power, 2024, 57(1): 158-166. | 
| [7] | ZHU Pengcheng, LIU Zhaoyu, SUN Ke, XU Jie, HU Pengfei, JIANG Daozhuo. Optimal Scheduling of Honeycomb Distribution Network Based on BADMM [J]. Electric Power, 2023, 56(6): 90-100. | 
| [8] | TIAN Yu, HUANG Jing, XIE Xiao, WANG Ruoxin, SHEN Danqing, HE Lina, YANG Kaifan, CHEN Ruke. Multi-objective Optimal Allocation of Reactive Compensation and OLTC in Active Distribution Network [J]. Electric Power, 2023, 56(3): 94-99. | 
| [9] | Li ZHOU, Chuanyu XIONG, Fangchao KE, Zhiwei LI, Hong ZHANG, Ran CHEN, Wanfang LIU, Yazhou YU, Liqin REN. Economic Operation Method of Active Distribution Network Based on Blockchain and Endowment Effect [J]. Electric Power, 2023, 56(12): 58-68. | 
| [10] | Tiecheng LI, Hui FAN, Qian ZANG, Jiangbo REN, Weiming ZHANG, Yibo WANG. Multi-point Synchronous Protection Scheme for Active Distribution Network Based on 5G Communication [J]. Electric Power, 2023, 56(11): 113-120. | 
| [11] | RU Qiushi, MI Xuefeng, SONG Zhigang, LIU Jintao, LEI Xia. Hybrid-Timescale Robust Optimization in Active Distribution Network with Energy Storage System-Soft Open Point [J]. Electric Power, 2022, 55(9): 129-139. | 
| [12] | ZHANG Jin, HU Cungang, RUI Tao. A Day-Ahead Two-Stage Distributed Optimal Scheduling Method for Active Distribution Network Based on ADMM [J]. Electric Power, 2021, 54(5): 91-100. | 
| [13] | WENG Jiaming, LIU Dong, AN Yu, YIN Haoyang, HUANG Zhi, QIN Han. Cyber-Physical Risk Evolution Analysis of Active Distribution Network under Feeder Control Error [J]. Electric Power, 2021, 54(3): 13-22. | 
| [14] | XU Yanchun, ZHAO Caicai, SUN Sihan, MI Lu. Fault Location for Active Distribution Network Based on Improved LMD and Energy Relative Entropy [J]. Electric Power, 2021, 54(11): 133-143. | 
| [15] | XU Quan, YUAN Zhiyong, LEI Jinyong, LIN Yuehuan, BAI Hao, LI Peng. Improvement of Operational Flexibility for Active Distribution Networks Based on Soft Open Points [J]. Electric Power, 2021, 54(11): 82-90. | 
| Viewed | ||||||
| 
										Full text | 
									
										 | 
								|||||
| 
										Abstract | 
									
										 | 
								|||||
