Electric Power ›› 2024, Vol. 57 ›› Issue (5): 126-136.DOI: 10.11930/j.issn.1004-9649.202309065
• Mechanism and Optimized Operation of the Electricity Carbon Synergy Market Under the New Energy System • Previous Articles Next Articles
					
													Fangshu LI(
), Kun YU(
), Xingying CHEN(
), Haochen HUA(
)
												  
						
						
						
					
				
Received:2023-09-14
															
							
															
							
																	Accepted:2023-12-13
															
							
																	Online:2024-05-23
															
							
							
																	Published:2024-05-28
															
							
						Supported by:Fangshu LI, Kun YU, Xingying CHEN, Haochen HUA. Price Decision Optimization for Electricity Retailers Based on Dual Game under Carbon Constraints[J]. Electric Power, 2024, 57(5): 126-136.
| 用户 | ||||
| 1 | 0.0005 | 0.15 | ||
| 2 | 0.0015 | 0.16 | ||
| 3 | 0.0010 | 0.15 | ||
| 4 | 0.0013 | 0.12 | 
Table 1 Loss satisfaction parameters for users
| 用户 | ||||
| 1 | 0.0005 | 0.15 | ||
| 2 | 0.0015 | 0.16 | ||
| 3 | 0.0010 | 0.15 | ||
| 4 | 0.0013 | 0.12 | 
| 零售商 | 数值 | |
| 火电零售商1  | 1400 | |
| 火电零售商2  | 1350 | |
| 火电零售商3  | 1240 | |
| 火电零售商4  | 1110 | |
| 绿电零售商1  | 1250 | |
| 绿电零售商2  | 1280 | 
Table 2 The upper limit for retailers to sell electricity
| 零售商 | 数值 | |
| 火电零售商1  | 1400 | |
| 火电零售商2  | 1350 | |
| 火电零售商3  | 1240 | |
| 火电零售商4  | 1110 | |
| 绿电零售商1  | 1250 | |
| 绿电零售商2  | 1280 | 
| 参数 | 数值 | |
| 火电零售商购火电的价格  | 37 | |
| 绿电零售商购绿电的价格  | 45 | |
| 碳排放权价格  | 40 | |
| 碳配额比例  | 0.4 | |
| 电力零售商价格调整步长  | 0.01 | 
Table 3 Parameters used for simulation
| 参数 | 数值 | |
| 火电零售商购火电的价格  | 37 | |
| 绿电零售商购绿电的价格  | 45 | |
| 碳排放权价格  | 40 | |
| 碳配额比例  | 0.4 | |
| 电力零售商价格调整步长  | 0.01 | 
| 零售商 | 时段 | 售电价格/(元·(MW·h)–1) | ||||||||
| 用户1 | 用户2 | 用户3 | 用户4 | |||||||
| 火电 零售商1  | 谷 | 25.634 | 24.446 | 25.439 | 22.891 | |||||
| 平 | 55.210 | 59.132 | 56.486 | 55.519 | ||||||
| 峰 | 114.313 | 110.709 | 109.301 | 117.410 | ||||||
| 火电 零售商2  | 谷 | 23.916 | 23.736 | 22.573 | 20.027 | |||||
| 平 | 54.914 | 56.818 | 57.213 | 56.165 | ||||||
| 峰 | 115.800 | 110.436 | 112.548 | 116.043 | ||||||
| 火电 零售商3  | 谷 | 24.786 | 25.327 | 22.024 | 23.623 | |||||
| 平 | 55.148 | 52.726 | 52.759 | 55.312 | ||||||
| 峰 | 117.235 | 115.564 | 110.964 | 112.495 | ||||||
| 火电 零售商4  | 谷 | 27.113 | 25.453 | 24.123 | 24.692 | |||||
| 平 | 50.525 | 54.947 | 52.910 | 55.310 | ||||||
| 峰 | 118.347 | 116.419 | 118.418 | 118.410 | ||||||
| 绿电 零售商1  | 谷 | 54.136 | 55.684 | 55.626 | 54.129 | |||||
| 平 | 101.305 | 100.417 | 96.340 | 99.193 | ||||||
| 峰 | 148.423 | 153.039 | 150.215 | 149.945 | ||||||
| 绿电 零售商2  | 谷 | 55.197 | 52.419 | 53.745 | 54.402 | |||||
| 平 | 97.037 | 96.510 | 100.419 | 101.329 | ||||||
| 峰 | 148.019 | 150.645 | 153.567 | 151.043 | ||||||
Table 4 Electricity selling price of each electricity retailer after the dual game
| 零售商 | 时段 | 售电价格/(元·(MW·h)–1) | ||||||||
| 用户1 | 用户2 | 用户3 | 用户4 | |||||||
| 火电 零售商1  | 谷 | 25.634 | 24.446 | 25.439 | 22.891 | |||||
| 平 | 55.210 | 59.132 | 56.486 | 55.519 | ||||||
| 峰 | 114.313 | 110.709 | 109.301 | 117.410 | ||||||
| 火电 零售商2  | 谷 | 23.916 | 23.736 | 22.573 | 20.027 | |||||
| 平 | 54.914 | 56.818 | 57.213 | 56.165 | ||||||
| 峰 | 115.800 | 110.436 | 112.548 | 116.043 | ||||||
| 火电 零售商3  | 谷 | 24.786 | 25.327 | 22.024 | 23.623 | |||||
| 平 | 55.148 | 52.726 | 52.759 | 55.312 | ||||||
| 峰 | 117.235 | 115.564 | 110.964 | 112.495 | ||||||
| 火电 零售商4  | 谷 | 27.113 | 25.453 | 24.123 | 24.692 | |||||
| 平 | 50.525 | 54.947 | 52.910 | 55.310 | ||||||
| 峰 | 118.347 | 116.419 | 118.418 | 118.410 | ||||||
| 绿电 零售商1  | 谷 | 54.136 | 55.684 | 55.626 | 54.129 | |||||
| 平 | 101.305 | 100.417 | 96.340 | 99.193 | ||||||
| 峰 | 148.423 | 153.039 | 150.215 | 149.945 | ||||||
| 绿电 零售商2  | 谷 | 55.197 | 52.419 | 53.745 | 54.402 | |||||
| 平 | 97.037 | 96.510 | 100.419 | 101.329 | ||||||
| 峰 | 148.019 | 150.645 | 153.567 | 151.043 | ||||||
| 用户 | 需求响应前 | 需求响应后 | ||
| 1 | 167031 | 162162 | ||
| 2 | 159953 | 155399 | ||
| 3 | 163533 | 158881 | ||
| 4 | 165517 | 160697 | 
Table 5 Electricity purchase costs for each user before and after demand response 单位:元
| 用户 | 需求响应前 | 需求响应后 | ||
| 1 | 167031 | 162162 | ||
| 2 | 159953 | 155399 | ||
| 3 | 163533 | 158881 | ||
| 4 | 165517 | 160697 | 
| 零售商 | 时段 | 售电价格/(元·(MW·h)–1) | ||||||
| 场景1 | 场景2 | 场景3 | ||||||
| 火电零售商1 | 谷 | 25.439 | 20.406 | 32.873 | ||||
| 平 | 56.486 | 58.588 | 56.499 | |||||
| 峰 | 109.301 | 120.357 | 103.749 | |||||
| 火电零售商2 | 谷 | 22.573 | 22.402 | 31.512 | ||||
| 平 | 57.213 | 60.845 | 56.895 | |||||
| 峰 | 112.548 | 118.232 | 106.388 | |||||
| 火电零售商3 | 谷 | 22.024 | 19.760 | 33.852 | ||||
| 平 | 52.759 | 58.741 | 57.346 | |||||
| 峰 | 110.964 | 123.599 | 105.456 | |||||
| 火电零售商4 | 谷 | 24.123 | 20.756 | 34.086 | ||||
| 平 | 52.910 | 55.434 | 53.325 | |||||
| 峰 | 118.418 | 122.344 | 104.182 | |||||
| 绿电零售商1 | 谷 | 55.626 | 47.264 | 60.324 | ||||
| 平 | 96.340 | 105.348 | 104.467 | |||||
| 峰 | 150.215 | 154.344 | 137.205 | |||||
| 绿电零售商2 | 谷 | 53.745 | 51.343 | 66.135 | ||||
| 平 | 100.419 | 104.658 | 103.163 | |||||
| 峰 | 153.567 | 150.533 | 137.098 | |||||
Table 6 The electricity selling prices of each retailer to user 3 in different scenarios
| 零售商 | 时段 | 售电价格/(元·(MW·h)–1) | ||||||
| 场景1 | 场景2 | 场景3 | ||||||
| 火电零售商1 | 谷 | 25.439 | 20.406 | 32.873 | ||||
| 平 | 56.486 | 58.588 | 56.499 | |||||
| 峰 | 109.301 | 120.357 | 103.749 | |||||
| 火电零售商2 | 谷 | 22.573 | 22.402 | 31.512 | ||||
| 平 | 57.213 | 60.845 | 56.895 | |||||
| 峰 | 112.548 | 118.232 | 106.388 | |||||
| 火电零售商3 | 谷 | 22.024 | 19.760 | 33.852 | ||||
| 平 | 52.759 | 58.741 | 57.346 | |||||
| 峰 | 110.964 | 123.599 | 105.456 | |||||
| 火电零售商4 | 谷 | 24.123 | 20.756 | 34.086 | ||||
| 平 | 52.910 | 55.434 | 53.325 | |||||
| 峰 | 118.418 | 122.344 | 104.182 | |||||
| 绿电零售商1 | 谷 | 55.626 | 47.264 | 60.324 | ||||
| 平 | 96.340 | 105.348 | 104.467 | |||||
| 峰 | 150.215 | 154.344 | 137.205 | |||||
| 绿电零售商2 | 谷 | 53.745 | 51.343 | 66.135 | ||||
| 平 | 100.419 | 104.658 | 103.163 | |||||
| 峰 | 153.567 | 150.533 | 137.098 | |||||
| 1 |  
											ZENG H B, SHAO B L, DAI H B, et al. Incentive-based demand response strategies for natural gas considering carbon emissions and load volatility[J]. Applied Energy, 2023, 348, 121541. 
																							 DOI  | 
										
| 2 | HUA H C, SHI J B, CHEN X Y, et al. Carbon emission flow based energy routing strategy in energy Internet[J]. IEEE Transactions on Industrial Informatics, 2024, 20 (3): 3974- 3985. | 
| 3 |  
											GU H F, LI Y, YU J, et al. Bi-level optimal low-carbon economic dispatch for an industrial park with consideration of multi-energy price incentives[J]. Applied Energy, 2020, 262, 114276. 
																							 DOI  | 
										
| 4 | HUA H C, CHEN X Y, GAN L, et al. A demand side joint electricity and carbon trading mechanism[J]. IEEE Transactions on Industrial Cyber-Physical Systems, 2024, 2, 14- 25. | 
| 5 |  
											JAVANMARD B, TABRIZIAN M, ANSARIAN M, et al. Energy management of multi-microgrids based on game theory approach in the presence of demand response programs, energy storage systems and renewable energy resources[J]. Journal of Energy Storage, 2021, 42, 102971. 
																							 DOI  | 
										
| 6 |  
											HONG Q Y, MENG F L, LIU J, et al. A bilevel game-theoretic decision-making framework for strategic retailers in both local and wholesale electricity markets[J]. Applied Energy, 2023, 330, 120311. 
																							 DOI  | 
										
| 7 |  
											潘虹锦, 高红均, 杨艳红, 等. 基于主从博弈的售电商多元零售套餐设计与多级市场购电策略[J]. 中国电机工程学报, 2022, 42 (13): 4785- 4800. 
																							 DOI  | 
										
|  
											PAN Hongjin, GAO Hongjun, YANG Yanhong, et al. Multi-type retail packages design and multi-level market power purchase strategy for electricity retailers based on master-slave game[J]. Proceedings of the CSEE, 2022, 42 (13): 4785- 4800. 
																							 DOI  | 
										|
| 8 |  
											华昊辰, 李宇童, 王同贺, 等. 一种基于混合随机H2/H∞方法的能源互联网边缘计算系统控制策略[J]. 中国电机工程学报, 2020, 40 (21): 6875- 6885. 
																							 DOI  | 
										
|  
											HUA Haochen, LI Yutong, WANG Tonghe, et al. A novel stochastic mixed H2/H∞ control strategy for energy internet edge computing system[J]. Proceedings of the CSEE, 2020, 40 (21): 6875- 6885. 
																							 DOI  | 
										|
| 9 |  
											张帅, 裴玮, 马腾飞, 等. 考虑马尔可夫决策的产消者P2P电能交易非合作博弈模型[J]. 电力系统自动化, 2023, 47 (13): 18- 27. 
																							 DOI  | 
										
|  
											ZHANG Shuai, PEI Wei, MA Tengfei, et al. Non-cooperative game model of prosumer P2P electricity trading considering Markov decision[J]. Automation of Electric Power Systems, 2023, 47 (13): 18- 27. 
																							 DOI  | 
										|
| 10 | 张旭东, 李飞, 刘迪, 等. 基于CNN的产消群需求响应滚动优化策略[J]. 中国电力, 2021, 54 (2): 78- 89. | 
| ZHANG Xudong, LI Fei, LIU Di, et al. CNN-based rolling optimization strategy for prosumer group in demand response[J]. Electric Power, 2021, 54 (2): 78- 89. | |
| 11 |  
											郭昆健, 高赐威, 林国营, 等. 现货市场环境下售电商激励型需求响应优化策略[J]. 电力系统自动化, 2020, 44 (15): 28- 35. 
																							 DOI  | 
										
|  
											GUO Kunjian, GAO Ciwei, LIN Guoying, et al. Optimization strategy of incentive based demand response for electricity retailer in spot market environment[J]. Automation of Electric Power Systems, 2020, 44 (15): 28- 35. 
																							 DOI  | 
										|
| 12 | 詹祥澎, 杨军, 王昕妍, 等. 考虑实时市场联动的电力零售商鲁棒定价策略[J]. 电网技术, 2022, 46 (6): 2141- 2153. | 
| ZHAN Xiangpeng, YANG Jun, WANG Xinyan, et al. Robust pricing strategy of power retailer considering linkage of real-time market[J]. Power System Technology, 2022, 46 (6): 2141- 2153. | |
| 13 |  
											ZHU C P, FAN R G, LIN J C. The impact of renewable portfolio standard on retail electricity market: a system dynamics model of tripartite evolutionary game[J]. Energy Policy, 2020, 136, 111072. 
																							 DOI  | 
										
| 14 |  
											SUN B, LI M Z, WANG F, et al. An incentive mechanism to promote residential renewable energy consumption in China's electricity retail market: a two-level Stackelberg game approach[J]. Energy, 2023, 269, 126861. 
																							 DOI  | 
										
| 15 |  
											DONG J, JIANG Y Z, LIU D R, et al. Promoting dynamic pricing implementation considering policy incentives and electricity retailers' behaviors: an evolutionary game model based on prospect theory[J]. Energy Policy, 2022, 167, 113059. 
																							 DOI  | 
										
| 16 | 李雅婷, 唐家俊, 张思, 等. 考虑多重不确定性因素的售电公司购售电决策模型[J]. 电力系统自动化, 2022, 46 (7): 33- 41. | 
| LI Yating, TANG Jiajun, ZHANG Si, et al. Decision-making model of electricity procurement and sale for electricity retailers considering multiple uncertain factors[J]. Automation of Electric Power Systems, 2022, 46 (7): 33- 41. | |
| 17 |  
											林国营, 卢世祥, 郭昆健, 等. 基于主从博弈的电网公司需求响应补贴定价机制[J]. 电力系统自动化, 2020, 44 (10): 59- 67. 
																							 DOI  | 
										
|  
											LIN Guoying, LU Shixiang, GUO Kunjian, et al. Stackelberg game based incentive pricing mechanism of demand response for power grid corporations[J]. Automation of Electric Power Systems, 2020, 44 (10): 59- 67. 
																							 DOI  | 
										|
| 18 |  
											张婕, 孙伟卿, 刘唯. 考虑需求响应收益的售电商实时电价决策模型[J]. 电网技术, 2022, 46 (2): 492- 504. 
																							 DOI  | 
										
|  
											ZHANG Jie, SUN Weiqing, LIU Wei. Real time pricing considering demand response revenue of electricity sellers[J]. Power System Technology, 2022, 46 (2): 492- 504. 
																							 DOI  | 
										|
| 19 | YAN Q Y, LIN H Y, ZHANG M J, et al. Two-stage flexible power sales optimization for electricity retailers considering demand response strategies of multi-type users[J]. International Journal of Electrical Power & Energy Systems, 2022, 137, 107031. | 
| 20 |  
											高赐威, 曹家诚, 吕冉, 等. 基于主从博弈的虚拟电厂内部购售电价格制定方法[J]. 电力需求侧管理, 2021, 23 (6): 8- 14. 
																							 DOI  | 
										
|  
											GAO Ciwei, CAO Jiacheng, LYU Ran, et al. Method for determining the internal price of virtual power plant based on stackelberg game theory[J]. Power Demand Side Management, 2021, 23 (6): 8- 14. 
																							 DOI  | 
										|
| 21 |  
											尹龙, 刘继春, 高红均, 等. 考虑多种用户价格机制下的综合型能源售电公司购电竞价策略[J]. 电网技术, 2018, 42 (1): 88- 97. 
																							 DOI  | 
										
|  
											YIN Long, LIU Jichun, GAO Hongjun, et al. Study on bidding strategy of comprehensive power retailer under multiple user-price mechanisms[J]. Power System Technology, 2018, 42 (1): 88- 97. 
																							 DOI  | 
										|
| 22 |  
											JU L W, WU J, LIN H Y, et al. Robust purchase and sale transactions optimization strategy for electricity retailers with energy storage system considering two-stage demand response[J]. Applied Energy, 2020, 271, 115155. 
																							 DOI  | 
										
| 23 | 戴尚文, 张利, 刘宁宁, 等. 考虑可再生能源消纳责任的售电公司购电决策分析[J]. 中国电力, 2021, 54 (9): 156- 164. | 
| DAI Shangwen, ZHANG Li, LIU Ningning, et al. Energy purchasing strategy of electricity retailer considering the responsibility of renewable energy consumption[J]. Electric Power, 2021, 54 (9): 156- 164. | |
| 24 |  
											LIU D, QIN Z M, HUA H C, et al. , Incremental incentive mechanism design for diversified consumers in demand response[J]. Applied Energy, 2023, 329, 120240. 
																							 DOI  | 
										
| 25 |  
											李姚旺, 张宁, 杜尔顺, 等. 基于碳排放流的电力系统低碳需求响应机制研究及效益分析[J]. 中国电机工程学报, 2022, 42 (8): 2830- 2842. 
																							 DOI  | 
										
|  
											LI Yaowang, ZHANG Ning, DU Ershun, et al. Mechanism study and benefit analysis on power system low carbon demand response based on carbon emission flow[J]. Proceedings of the CSEE, 2022, 42 (8): 2830- 2842. 
																							 DOI  | 
										|
| 26 |  
											LI P, WANG H, ZHANG B S. A distributed online pricing strategy for demand response programs[J]. IEEE Transactions on Smart Grid, 2019, 10 (1): 350- 360. 
																							 DOI  | 
										
| 27 |  
											胡鹏, 艾欣, 张朔, 等. 基于需求响应的分时电价主从博弈建模与仿真研究[J]. 电网技术, 2020, 44 (2): 585- 592. 
																							 DOI  | 
										
|  
											HU Peng, AI Xin, ZHANG Shuo, et al. Modelling and simulation study of TOU stackelberg game based on demand response[J]. Power System Technology, 2020, 44 (2): 585- 592. 
																							 DOI  | 
										|
| 28 |  
											李鹏, 吴迪凡, 李雨薇, 等. 基于综合需求响应和主从博弈的多微网综合能源系统优化调度策略[J]. 中国电机工程学报, 2021, 41 (4): 1307- 1321, 1538. 
																							 DOI  | 
										
|  
											LI Peng, WU Difan, LI Yuwei, et al. Optimal dispatch of multi-microgrids integrated energy system based on integrated demand response and stackelberg game[J]. Proceedings of the CSEE, 2021, 41 (4): 1307- 1321, 1538. 
																							 DOI  | 
										|
| 29 |  
											李飞, 李咸善, 鲁明芳, 等. 计及配额考核约束的发电商与大用户直购电博弈优化模型[J]. 高电压技术, 2023, 49 (1): 128- 137. 
																							 DOI  | 
										
|  
											LI Fei, LI Xianshan, LU Mingfang, et al. Game optimization model of direct power purchase between power suppliers and large consumers with RPS assessment constrains[J]. High Voltage Engineering, 2023, 49 (1): 128- 137. 
																							 DOI  | 
										
| [1] | WANG Shiqian, HAN Ding, WANG Nan, BAI Hongkun, SONG Dawei, HU Caihong. Cooperative Scheduling of Active Distribution Network Based on Two Layer Master Slave Game [J]. Electric Power, 2025, 58(9): 105-114. | 
| [2] | GAO Fangjie, SUN Yujie, LI Yi, LE Ying, ZHANG Jiguang, XU Chuanbo, LIU Dunnan. Robust Optimization Scheduling of Island Multi-energy Microgrid Considering Offshore Wind Power to Hydrogen [J]. Electric Power, 2025, 58(7): 68-79. | 
| [3] | ZHANG Bohang, QI Jun, XIE Luyao, ZHANG Youbing, ZHANG Boyang. Distributed Model Predictive Frequency Control of Interconnected Power Systems Considering Demand Response [J]. Electric Power, 2025, 58(7): 105-114. | 
| [4] | ZHANG Jie, HUA Yufei, WANG Chen. A Demand Side Adjustment Capacity Sharing Model Based on Cooperative Game [J]. Electric Power, 2025, 58(6): 45-55. | 
| [5] | WEI Chunhui, SHAN Linsen, HU Dadong, GAO Qianheng, ZHANG Xinsong, XUE Xiaocen. Optimal Scheduling Strategy of Park-level Virtual Power Plant for Demand Response [J]. Electric Power, 2025, 58(6): 112-121. | 
| [6] | XU Shijie, HU Bangjie, ZHAO Liang, WANG Pei. Research on Optimal Dispatch with Source-Load Coordination for Micro-energy Grid Based on Energy-Carbon Coupling Model [J]. Electric Power, 2025, 58(4): 1-12. | 
| [7] | XIANG Shilin, XIANG Yue, WANG Yanliang, LU Yu. Optimization Strategy for Spatiotemporal Cooperative Operation of Multiple Data Centers Considering Load Response Characteristics [J]. Electric Power, 2025, 58(4): 170-181. | 
| [8] | Wenjun XU, Gang MA, Yunting YAO, Yuxiang MENG, Weikang LI. Multi-energy Optimal Scheduling of Industrial Parks Considering Green Certificate - Carbon Trading Mechanism and Hydrogen Compressed Natural Gas [J]. Electric Power, 2025, 58(2): 154-163. | 
| [9] | TAN Qinliang, ZENG Jiabin, LV Hanyu, HE Jiaming, SHI Chaofan, DING Yihong. Optimization of Distribution-side Distributed Photovoltaic Market Trading Strategies Considering Source-Grid-Load-Storage Coordination [J]. Electric Power, 2025, 58(10): 39-49. | 
| [10] | YANG Xiong, LI Juan, JIANG Yunlong, LI Hongmei, XU Wanyun, LI Xiaolu, GUO Ruipeng. An Optimal Scheduling Method for Demand-Side Resource Clustering in Distribution Networks Based on Customer Directrix Load Reconfiguration [J]. Electric Power, 2025, 58(10): 163-170. | 
| [11] | Lingling TAN, Wei TANG, Dongqing CHU, Jingrui LI, Yumin ZHANG, Xingquan JI. Optimal Dispatching of Electric-Heat-Hydrogen Integrated Energy System Based on Stackelberg Game [J]. Electric Power, 2024, 57(9): 136-145. | 
| [12] | Fengliang XU, Keqian WANG, Wenhao WANG, Peng WANG, Wenye WANG, Shuai ZHANG, Fengzhan ZHAO. Optimal Allocation of Hybrid Energy Storage in Low-Voltage Distribution Networks with Incentive-based Demand Response [J]. Electric Power, 2024, 57(6): 90-101. | 
| [13] | Cailing ZHANG, Shuang WANG, Shuna GE, Deng PAN, Yan ZHANG, Wei HAN, Wenyan DUAN. Optimal Scheduling of Integrated Energy Systems Considering Flexible Demand Response and Carbon Emission-Green Certificate Joint Trading [J]. Electric Power, 2024, 57(5): 14-25. | 
| [14] | Lingling TAN, Wei TANG, Dongqing CHU, Zihan YU, Xingquan JI, Yumin ZHANG. Low-Carbon-Economic Collaborative Optimal Dispatching of Microgrid Considering Electricity-Hydrogen Integration [J]. Electric Power, 2024, 57(5): 137-148. | 
| [15] | Yuefen GAO, Chengbo YUN, Fanpeng KONG, Xuesong WANG. Optimization of Integrated Energy System Coupled with Power-to-Gas and Carbon Capture and Storage Equipment under Demand Response Incentive [J]. Electric Power, 2024, 57(4): 32-41. | 
| Viewed | ||||||
| 
										Full text | 
									
										 | 
								|||||
| 
										Abstract | 
									
										 | 
								|||||
