Electric Power ›› 2024, Vol. 57 ›› Issue (5): 137-148.DOI: 10.11930/j.issn.1004-9649.202312018
• Mechanism and Optimized Operation of the Electricity Carbon Synergy Market Under the New Energy System • Previous Articles Next Articles
Lingling TAN1(), Wei TANG1, Dongqing CHU1, Zihan YU2(
), Xingquan JI2, Yumin ZHANG2(
)
Received:
2023-12-06
Accepted:
2024-03-05
Online:
2024-05-23
Published:
2024-05-28
Supported by:
Lingling TAN, Wei TANG, Dongqing CHU, Zihan YU, Xingquan JI, Yumin ZHANG. Low-Carbon-Economic Collaborative Optimal Dispatching of Microgrid Considering Electricity-Hydrogen Integration[J]. Electric Power, 2024, 57(5): 137-148.
参数 | 数值 | 参数 | 数值 | |||
0.85 | 0、3000 | |||||
0、800 | 0、1200 | |||||
–600、600 | 0.80 | |||||
0.95 | 0、800 | |||||
–600、600 | 0.02 | |||||
0.03 |
Table 1 Parameters of equipment related to electricity-hydrogen integration
参数 | 数值 | 参数 | 数值 | |||
0.85 | 0、3000 | |||||
0、800 | 0、1200 | |||||
–600、600 | 0.80 | |||||
0.95 | 0、800 | |||||
–600、600 | 0.02 | |||||
0.03 |
参数 | 数值 | 参数 | 数值 | |||
1.117 | 2 | |||||
50、600 | 0.9 | |||||
0.9 | 50 | |||||
700、0 |
Table 2 Parameters of power supply and energy storage equipment
参数 | 数值 | 参数 | 数值 | |||
1.117 | 2 | |||||
50、600 | 0.9 | |||||
0.9 | 50 | |||||
700、0 |
项目 | 成本/万元 | |||||
场景1 | 场景2 | 场景3 | ||||
总成本 | 2.010 | 1.184 | 1.109 | |||
运行成本 | 0.419 | 0.251 | 0.243 | |||
碳排放成本 | 0.256 | 0.163 | 0.154 | |||
购电成本 | 0.162 | 0.120 | 0.079 | |||
购气成本 | 0.776 | 0.465 | 0.461 | |||
弃风弃光成本 | 0.387 | 0.080 | 0.072 | |||
电氢一体化成本 | — | 0.104 | 0.101 |
Table 3 Economic costs for different scenarios
项目 | 成本/万元 | |||||
场景1 | 场景2 | 场景3 | ||||
总成本 | 2.010 | 1.184 | 1.109 | |||
运行成本 | 0.419 | 0.251 | 0.243 | |||
碳排放成本 | 0.256 | 0.163 | 0.154 | |||
购电成本 | 0.162 | 0.120 | 0.079 | |||
购气成本 | 0.776 | 0.465 | 0.461 | |||
弃风弃光成本 | 0.387 | 0.080 | 0.072 | |||
电氢一体化成本 | — | 0.104 | 0.101 |
单位弃风成本 | 单位弃光成本 | 制氢量/kg | ||||
场景2 | 场景3 | |||||
0.2 | 0.2 | 17262.74 | 16594.11 | |||
0.3 | 0.3 | 17428.11 | 16777.18 | |||
0.4 | 0.4 | 17730.62 | 17096.50 |
Table 4 Hydrogen production under different curtailment costs of wind and PV
单位弃风成本 | 单位弃光成本 | 制氢量/kg | ||||
场景2 | 场景3 | |||||
0.2 | 0.2 | 17262.74 | 16594.11 | |||
0.3 | 0.3 | 17428.11 | 16777.18 | |||
0.4 | 0.4 | 17730.62 | 17096.50 |
1 |
XU J Z, YI Y Q. Multi-microgrid low-carbon economy operation strategy considering both source and load uncertainty: a Nash bargaining approach[J]. Energy, 2023, 263, 125712.
DOI |
2 |
LI Z M, WU L, XU Y. Risk-averse coordinated operation of a multi-energy microgrid considering voltage/var control and thermal flow: an adaptive stochastic approach[J]. IEEE Transactions on Smart Grid, 2021, 12 (5): 3914- 3927.
DOI |
3 | 张玉敏, 孙鹏凯, 吉兴全, 等. 考虑扩展碳排放流的综合能源系统低碳经济调度[J]. 电网技术, 2023, 47 (8): 3174- 3191. |
ZHANG Yumin, SUN Pengkai, JI Xingquan, et al. Low-carbon economic dispatch of integrated energy system with augmented carbon emission flow[J]. Power System Technology., 2023, 47 (8): 3174- 3191. | |
4 | 张玉敏, 孙鹏凯, 孟祥剑, 等. 基于碳势-能源价格双响应的综合能源系统低碳经济调度[J/OL]. 电力系统自动化: 1–20[2023-08-28].https://kns.cnki.net/kcms/detail/32.1180.TP.20230828.0831.002.html. |
ZHANG Yumin, SUN Pengkai, MENG Xiangjian, et al. Low-carbon economic dispatch of integrated energy system with dual response of carbon potential energy price[J/OL]. Automation of Electric Power Systems: 1–20[2023-08-28].https://kns.cnki.net/kcms/detail/32.1180.TP.20230828.0831.002.html. | |
5 | YANG J J, DONG Z Y, WEN F S. A comparative study of marginal loss pricing algorithms in electricity markets[J]. IET Generation, Transmission & Distribution, 2021, 15 (3): 576- 588. |
6 | 刘名扬. 考虑阶梯型碳交易的多能微网运行与规划研究[D]. 南昌: 南昌大学, 2022. |
LIU Mingyang. Operation and planning of multi-energy microgrids considering ladder-type carbon trading mechanism[D]. Nanchang: Nanchang University, 2022. | |
7 |
ZHANG Y M, LI J R, JI X Q, et al. Optimal dispatching of electric-heat-hydrogen integrated energy system based on Stackelberg game[J]. Energy Conversion and Economics, 2023, 4 (4): 267- 275.
DOI |
8 | 申泽渊, 赵海波, 李伟康, 等. 面向偏远地区低碳发展的风-光-沼-储综合能源微网多目标规划方法[J]. 太阳能学报, 2023, 44 (7): 71- 79. |
SHEN Zeyuan, ZHAO Haibo, LI Weikang, et al. Multi-objective optimization method for low-carbon development of wind-solar-biogas-storage integrated energy microgrids in remote regions[J]. Acta Energiae Solaris Sinica, 2023, 44 (7): 71- 79. | |
9 | LIU Y, JIANG Z P, XING Z X, et al. Economic and low-carbon island operation scheduling strategy for microgrid with renewable energy[J]. Energy Reports, 2022, 8, 196- 204. |
10 | 周天睿, 康重庆, 徐乾耀, 等. 电力系统碳排放流的计算方法初探[J]. 电力系统自动化, 2012, 36 (11): 44- 49. |
ZHOU Tianrui, KANG Chongqing, XU Qianyao, et al. Preliminary investigation on a method for carbon emission flow calculation of power system[J]. Automation of Electric Power Systems, 2012, 36 (11): 44- 49. | |
11 | 李姚旺, 张宁, 杜尔顺, 等. 基于碳排放流的电力系统低碳需求响应机制研究及效益分析[J]. 中国电机工程学报, 2022, 42 (8): 2830- 2842. |
LI Yaowang, ZHANG Ning, DU Ershun, et al. Mechanism study and benefit analysis on power system low carbon demand response based on carbon emission flow[J]. Proceedings of the CSEE, 2022, 42 (8): 2830- 2842. | |
12 |
WAN T, TAO Y C, QIU J, et al. Internet data centers participating in electricity network transition considering carbon-oriented demand response[J]. Applied Energy, 2023, 329, 120305.
DOI |
13 | 严金炜, 谭露, 刘念, 等. 基于碳流追溯的多微电网系统电碳耦合交易方法[J/OL]. 电网技术: 1–15[2023-10-28].https://doi.org/10.13335/j.1000-3673.pst.2023.0591 |
YAN Jinwei, TAN Lu, LIU Nian, et al. Electricity-carbon coupling trading for multi-microgrids system based on carbon flow tracing[J/OL]. Power System Technology: 1–15[2023-10-28].https://doi.org/10.13335/j.1000-3673.pst.2023.0591. | |
14 | XIONG T L, LIN B W, YANG C, et al. A method for low-carbon dispatch of PEDF (photovoltaic, energy storage, direct current and flexibility) microgrid considering indirect carbon emissions[C]//2022 Asian Conference on Frontiers of Power and Energy (ACFPE). Chengdu, China. IEEE, 2022: 578–584. |
15 |
LI B, LI J C. Probabilistic sizing of a low-carbon emission power system considering HVDC transmission and microgrid clusters[J]. Applied Energy, 2021, 304, 117760.
DOI |
16 | 陈胜, 张景淳, 卫志农, 等. 面向能源转型的电-气-氢综合能源系统规划与运行[J]. 电力系统自动化, 2023, 47 (19): 16- 30. |
CHEN Sheng, ZHANG Jingchun, WEI Zhinong, et al. Energy transition oriented planning and operation of electricity-gas-hydrogen integrated energy system[J]. Automation of Electric Power Systems, 2023, 47 (19): 16- 30. | |
17 |
袁铁江, 计力, 田雪沁, 等. 考虑燃料电池汽车加氢负荷的电-氢系统协同优化运行[J]. 电力系统自动化, 2023, 47 (5): 16- 25.
DOI |
YUAN Tiejiang, JI Li, TIAN Xueqin, et al. Synergistic optimal operation of electricity-hydrogen systems considering hydrogen refueling loads for fuel cell vehicles[J]. Automation of Electric Power Systems, 2023, 47 (5): 16- 25.
DOI |
|
18 | 郜捷, 宋洁, 王剑晓, 等. 支撑中国能源安全的电氢耦合系统形态与关键技术[J]. 电力系统自动化, 2023, 47 (19): 1- 15. |
GAO Jie, SONG Jie, WANG Jianxiao, et al. Form and key technologies of integrated electricity-hydrogen system supporting energy security in China[J]. Automation of Electric Power Systems, 2023, 47 (19): 1- 15. | |
19 |
潘光胜, 顾钟凡, 罗恩博, 等. 新型电力系统背景下的电制氢技术分析与展望[J]. 电力系统自动化, 2023, 47 (10): 1- 13.
DOI |
PAN Guangsheng, GU Zhongfan, LUO Enbo, et al. Analysis and prospect of electrolytic hydrogen technology under background of new power systems[J]. Automation of Electric Power Systems, 2023, 47 (10): 1- 13.
DOI |
|
20 | 左冠林. 考虑低碳制氢的微网优化配置与经济运行研究[D]. 广州: 华南理工大学, 2022. |
ZUO Guanlin. Research on optimal configuration and economic operation of microgrid considering low-carbon hydrogen production[D]. Guangzhou: South China University of Technology, 2022. | |
21 | 袁铁江, 杨洋, 李瑞, 等. 考虑源荷不确定性的氢能微网容量优化配置[J]. 中国电力, 2023, 56 (7): 21- 32. |
YUAN Tiejiang, YANG Yang, LI Rui, et al. Optimized configuration of hydrogen-energy microgrid capacity considering source charge uncertainties[J]. Electric Power, 2023, 56 (7): 21- 32. | |
22 | 吉兴全, 赵国航, 于一潇, 等. 基于4E平衡的碳排放因素分解与峰值预测方法[J]. 高电压技术, 2022, 48 (7): 2483- 2494. |
JI Xingquan, ZHAO Guohang, YU Yixiao, et al. Carbon emission peak prediction and factor decompose method based on 4E equilibrium[J]. High Voltage Engineering, 2022, 48 (7): 2483- 2494. | |
23 |
WANG M Q, YANG M, FANG Z, et al. A practical feeder planning model for urban distribution system[J]. IEEE Transactions on Power Systems, 2023, 38 (2): 1297- 1308.
DOI |
24 |
董帅, 王成福, 徐士杰, 等. 计及网络动态特性的电-气-热综合能源系统日前优化调度[J]. 电力系统自动化, 2018, 42 (13): 12- 19.
DOI |
DONG Shuai, WANG Chengfu, XU Shijie, et al. Day-ahead optimal scheduling of electricity-gas-heat integrated energy system considering dynamic characteristics of networks[J]. Automation of Electric Power Systems, 2018, 42 (13): 12- 19.
DOI |
|
25 |
ZHANG Y D, DENG H, YANG J J, et al. Impacts of renewable portfolio standard on carbon emission peaking and tradable green certificate market: a system dynamics analysis method[J]. Frontiers in Energy Research, 2022, 10, 963177.
DOI |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||