Electric Power ›› 2023, Vol. 56 ›› Issue (12): 9-19.DOI: 10.11930/j.issn.1004-9649.202304096
• Planning, Operation and Power Transaction of Distributed Smart Grid • Previous Articles Next Articles
Can CHEN1,3(), Jing WANG2(
), Zongmin YU2, Yuan MA1,3, Yi WANG2, Liangchenxi FAN2, Ran DING4, Hongquan LI2
Received:
2023-04-26
Accepted:
2023-07-25
Online:
2023-12-23
Published:
2023-12-28
Supported by:
Can CHEN, Jing WANG, Zongmin YU, Yuan MA, Yi WANG, Liangchenxi FAN, Ran DING, Hongquan LI. Review and Outlook of Autonomous Unit Planning of Distribution Network[J]. Electric Power, 2023, 56(12): 9-19.
资源类型 | 物理边界 | 资产属性 | 运营方 | |||||||
电源 | 网架 | |||||||||
自治台区 | 单台配变的供电范围 | 用户 | 供电企业 | 供电企业 | ||||||
并网型 微电网 | 并网自用 型微电网 | 由微电网内部的 电气接线网络结 构、相应负荷和 分布式电源所在 微电网的节点位 置决定 | 用户 | 用户 | 用户/ 第三方 | |||||
并网公用 型微电网 | 第三方 | 供电企业/ 第三方 | 供电企业/ 第三方 | |||||||
乡镇供电网格 | 乡镇网格行政边界 | 用户 | 供电企业 | 供电企业 |
Table 1 Concept of autonomous unit
资源类型 | 物理边界 | 资产属性 | 运营方 | |||||||
电源 | 网架 | |||||||||
自治台区 | 单台配变的供电范围 | 用户 | 供电企业 | 供电企业 | ||||||
并网型 微电网 | 并网自用 型微电网 | 由微电网内部的 电气接线网络结 构、相应负荷和 分布式电源所在 微电网的节点位 置决定 | 用户 | 用户 | 用户/ 第三方 | |||||
并网公用 型微电网 | 第三方 | 供电企业/ 第三方 | 供电企业/ 第三方 | |||||||
乡镇供电网格 | 乡镇网格行政边界 | 用户 | 供电企业 | 供电企业 |
不确定性种类 | 处理方法 | 建模方法 | 参考 文献 | |||
风光发电及负荷的不确定性 | 鲁棒优化 | 采用不确定变量区间鲁棒优化 | [ | |||
区间线性规划 | [ | |||||
基于概率模型 | 中值拉丁超立方抽样 | [ | ||||
拉丁超立方抽样 | [ | |||||
基于Copula方法的光伏发电概率模型 | [ | |||||
场景分 析法 | 基于数据的季节行为进行分类生成各不确定变量场景 | [ | ||||
基于K-means聚类进行典型场景分析 | [ | |||||
不确定 集合 | 基于数据驱动压缩不确定性集 | [ | ||||
引入0-1变量建立源荷不确定区间集合 | [ | |||||
引入0-1变量建立风光不确定区间集合 | [ | |||||
改进的不确定多面体集合 | [ | |||||
采用包络模型和盒式不确定集合 | [ | |||||
采用不确定度矩阵处理 | [ | |||||
同时最小化风电出力原始场景和典型场景的空间距离和矩距离 | [ | |||||
机会约束 | 建立基于机会约束的多时段规划模型,协调长期不确定性和短期不确定性 | [ | ||||
决策树 辅助 | 基于决策树辅助的自治单元规划方法 | [ | ||||
价格的不确 定性 | 随机优化 | 处理能源价格波动的长期不确定性 | [ | |||
鲁棒优化 | 采用鲁棒优化方法的市场价格区间代替随机优化的概率分布函数 | [ | ||||
信息差距决策 | 基于信息差距决策的多能源微网多时段规划模型 | [ | ||||
异常情况的 不确定性 | 极端灾害场景 | 极端灾害场景被处理为灵活约束 | [ | |||
故障事件 | 采用故障事件约束的方法 | [ | ||||
光伏出力 相关性 | 点估计 方法 | 基于Nataf变换的点估计方法 | [ | |||
光伏和负荷 相关性 | 标准正态随机分布 | 基于等概率转换原则和Cholesky分解技术,生成存在相关性的光伏功率、负荷随机样本 | [ | |||
光伏和负荷的时序相关性 | 动态规划 | 基于动态弯曲距离构造光-荷联合时序场景 | [ |
Table 2 Uncertainty types, processing methods and modeling methods
不确定性种类 | 处理方法 | 建模方法 | 参考 文献 | |||
风光发电及负荷的不确定性 | 鲁棒优化 | 采用不确定变量区间鲁棒优化 | [ | |||
区间线性规划 | [ | |||||
基于概率模型 | 中值拉丁超立方抽样 | [ | ||||
拉丁超立方抽样 | [ | |||||
基于Copula方法的光伏发电概率模型 | [ | |||||
场景分 析法 | 基于数据的季节行为进行分类生成各不确定变量场景 | [ | ||||
基于K-means聚类进行典型场景分析 | [ | |||||
不确定 集合 | 基于数据驱动压缩不确定性集 | [ | ||||
引入0-1变量建立源荷不确定区间集合 | [ | |||||
引入0-1变量建立风光不确定区间集合 | [ | |||||
改进的不确定多面体集合 | [ | |||||
采用包络模型和盒式不确定集合 | [ | |||||
采用不确定度矩阵处理 | [ | |||||
同时最小化风电出力原始场景和典型场景的空间距离和矩距离 | [ | |||||
机会约束 | 建立基于机会约束的多时段规划模型,协调长期不确定性和短期不确定性 | [ | ||||
决策树 辅助 | 基于决策树辅助的自治单元规划方法 | [ | ||||
价格的不确 定性 | 随机优化 | 处理能源价格波动的长期不确定性 | [ | |||
鲁棒优化 | 采用鲁棒优化方法的市场价格区间代替随机优化的概率分布函数 | [ | ||||
信息差距决策 | 基于信息差距决策的多能源微网多时段规划模型 | [ | ||||
异常情况的 不确定性 | 极端灾害场景 | 极端灾害场景被处理为灵活约束 | [ | |||
故障事件 | 采用故障事件约束的方法 | [ | ||||
光伏出力 相关性 | 点估计 方法 | 基于Nataf变换的点估计方法 | [ | |||
光伏和负荷 相关性 | 标准正态随机分布 | 基于等概率转换原则和Cholesky分解技术,生成存在相关性的光伏功率、负荷随机样本 | [ | |||
光伏和负荷的时序相关性 | 动态规划 | 基于动态弯曲距离构造光-荷联合时序场景 | [ |
综合措施类型 | 物理模型 | 约束条件 | 数学建模方法 | 参考 文献 | ||||
储能 | 铅酸蓄电池 | 放电深度和循环次数约束 | 清晰等价处理模糊机会优化约束 | [ | ||||
锂离子电池 | 放电深度和循环次数约束 | 直流微电网优化配置模型 | [ | |||||
压缩空气 储能 | 备用约束 | 双层优化配置模型 | [ | |||||
电氢耦合的混合储能 | 电解槽的最大输入功率与燃料电池的最大输出功率约束 | NLP混合储能优化配置模型 | [ | |||||
锂电池和超级电容器 | 能量偏差约束 | NLP交直流混合储能优化配置模型 | [ | |||||
氢储能和蓄电池混合 | 通用约束 | MINLP混合储能优化配置模型 | [ | |||||
冷热电耦合 | 冷热电联供 | 通用约束 | NLP冷热电联供优化配置模型 | [ | ||||
冷热电联供 | 供热管网传递最大热能约束 | MILP多微网优化配置模型 | [ | |||||
电-储热 系统 | 通用约束 | MILP微电网优化配置模型 | [ | |||||
热电联供 | 储存热能容量约束、储热系统的充放电速率约束 | MILP微电网优化配置模型 | [ | |||||
CO2热循环平衡、热泵平衡 | MILP微电网优化配置模型 | [ | ||||||
CHP换热器平衡 | 线性处理交流方程 | [ | ||||||
备用需求 | 随机故障 | 事故概率 | 提出考虑成本收益比的备用容量分配方法 | [ | ||||
将机会约束最优潮流作为概率约束 | 提出一种自治单元随机备用容量优化模型 | [ | ||||||
自治单元孤岛概率 | 提出考虑孤岛惩罚项的有功-频率控制的最优备用容量配置方法 | [ | ||||||
预测误差 | 风光电预测误差 | 基于多场景概率旋转备用模型 | [ | |||||
采用拉丁超立方抽样 | [ | |||||||
提出一种发电机备用容量计算方法 | [ | |||||||
提出了考虑运行时有功调度策略的备用需求模型 | [ | |||||||
min-max两阶段博弈模型 | [ | |||||||
建立了考虑风电备用与需求侧备用的两阶段鲁棒备用容量优化模型 | [ | |||||||
负荷预测误差 | 建立一种考虑备用共享的备用容量分配模型 | [ |
Table 3 Comprehensive measures, physical models, and modeling methods
综合措施类型 | 物理模型 | 约束条件 | 数学建模方法 | 参考 文献 | ||||
储能 | 铅酸蓄电池 | 放电深度和循环次数约束 | 清晰等价处理模糊机会优化约束 | [ | ||||
锂离子电池 | 放电深度和循环次数约束 | 直流微电网优化配置模型 | [ | |||||
压缩空气 储能 | 备用约束 | 双层优化配置模型 | [ | |||||
电氢耦合的混合储能 | 电解槽的最大输入功率与燃料电池的最大输出功率约束 | NLP混合储能优化配置模型 | [ | |||||
锂电池和超级电容器 | 能量偏差约束 | NLP交直流混合储能优化配置模型 | [ | |||||
氢储能和蓄电池混合 | 通用约束 | MINLP混合储能优化配置模型 | [ | |||||
冷热电耦合 | 冷热电联供 | 通用约束 | NLP冷热电联供优化配置模型 | [ | ||||
冷热电联供 | 供热管网传递最大热能约束 | MILP多微网优化配置模型 | [ | |||||
电-储热 系统 | 通用约束 | MILP微电网优化配置模型 | [ | |||||
热电联供 | 储存热能容量约束、储热系统的充放电速率约束 | MILP微电网优化配置模型 | [ | |||||
CO2热循环平衡、热泵平衡 | MILP微电网优化配置模型 | [ | ||||||
CHP换热器平衡 | 线性处理交流方程 | [ | ||||||
备用需求 | 随机故障 | 事故概率 | 提出考虑成本收益比的备用容量分配方法 | [ | ||||
将机会约束最优潮流作为概率约束 | 提出一种自治单元随机备用容量优化模型 | [ | ||||||
自治单元孤岛概率 | 提出考虑孤岛惩罚项的有功-频率控制的最优备用容量配置方法 | [ | ||||||
预测误差 | 风光电预测误差 | 基于多场景概率旋转备用模型 | [ | |||||
采用拉丁超立方抽样 | [ | |||||||
提出一种发电机备用容量计算方法 | [ | |||||||
提出了考虑运行时有功调度策略的备用需求模型 | [ | |||||||
min-max两阶段博弈模型 | [ | |||||||
建立了考虑风电备用与需求侧备用的两阶段鲁棒备用容量优化模型 | [ | |||||||
负荷预测误差 | 建立一种考虑备用共享的备用容量分配模型 | [ |
自治单元运行及 调控建模 | 描述 | 参考文献 | ||||
运行约束 | 功率交换约束 | 自治单元与配电网的交互功率的大小需要根据线路传输能力进行约束 | [ | |||
自平衡率约束 | 反映自治单元独自运行的能力 | [ | ||||
RES渗透率约束 | 保证可再生能源最低发电量 | [ | ||||
RES利用率约束 | 保证尽可能使用可再生能源 | [ | ||||
自治单元倒送功率约束 | 为了合理把控自治单元向配电网倒送功率的风险 | [ | ||||
能量偏差约束 | 保证加入储能后的平抑效果 | [ | ||||
调控模式 | 分散式控制 | 基于本地信息,快速响应分布式电源频繁波动 | [ | |||
分布式控制 | 共享交互边界信息,兼顾控制快速性与全局协调能力 | [ | ||||
云边协同控制 | 边端聚合灵活控制能力、云端协调分解控制指令,减轻集中控制负担 | [ |
Table 4 Autonomous unit operation and regulation modeling
自治单元运行及 调控建模 | 描述 | 参考文献 | ||||
运行约束 | 功率交换约束 | 自治单元与配电网的交互功率的大小需要根据线路传输能力进行约束 | [ | |||
自平衡率约束 | 反映自治单元独自运行的能力 | [ | ||||
RES渗透率约束 | 保证可再生能源最低发电量 | [ | ||||
RES利用率约束 | 保证尽可能使用可再生能源 | [ | ||||
自治单元倒送功率约束 | 为了合理把控自治单元向配电网倒送功率的风险 | [ | ||||
能量偏差约束 | 保证加入储能后的平抑效果 | [ | ||||
调控模式 | 分散式控制 | 基于本地信息,快速响应分布式电源频繁波动 | [ | |||
分布式控制 | 共享交互边界信息,兼顾控制快速性与全局协调能力 | [ | ||||
云边协同控制 | 边端聚合灵活控制能力、云端协调分解控制指令,减轻集中控制负担 | [ |
多阶段协同问题类型 | 数学建模 | 参考文献 | ||
规划和运行协同 | MINLP两阶段随机优化模型 | [ | ||
基于多代理的MILP两阶段机会约束随机MILP模型 | [ | |||
调度和规划协调 | 机会约束转化为确定性对等问题 | [ |
Table 5 Comparisons between two-stage models
多阶段协同问题类型 | 数学建模 | 参考文献 | ||
规划和运行协同 | MINLP两阶段随机优化模型 | [ | ||
基于多代理的MILP两阶段机会约束随机MILP模型 | [ | |||
调度和规划协调 | 机会约束转化为确定性对等问题 | [ |
需求响应类型 | 物理模型 | 数学建模 | 参考文献 | |||
价格型需求响应 | 电价约束 | 清晰等价处理模糊机会优化约束 | [ | |||
需求响应供电方和用电方约束 | 基于机会约束的双层增量配电网优化配置模型 | [ | ||||
消费者负荷功率约束 | 两阶段优化模型(离散NLP+MINLP) | [ | ||||
电价上下界约束 | 清晰等价处理模糊机会优化约束 | [ | ||||
电价上下界约束 | MILP优化配置模型 | [ | ||||
激励型需求响应 | 负荷需求容量约束 | MILP优化配置模型 | [ | |||
可控负荷约束和可转移时间约束 | 直流微电网优化配置模型 | [ | ||||
可控负荷需求响应 | 负荷转移约束 | MILP双层优化配置模型 | [ | |||
负荷中断功率约束和平移负荷上限约束 | NLP冷热电供微电网优化配置模型 | [ | ||||
可中断负荷的中断容量约束、中断持续时间约束和调度间隔时间约束,可平移负荷的连续供电约束和调度次数约束 | 线性化可控负荷调动成本的绝对值问题和约束的最小值问题 | [ | ||||
可中断负荷的中断容量、中断次数和连续中断事件约束 | SOCP松弛微电网潮流方程 | [ | ||||
电动汽车最大充电功率约束 | 单层模型变为MILP双层优化模型 | [ |
Table 6 Comparisons of demand response models
需求响应类型 | 物理模型 | 数学建模 | 参考文献 | |||
价格型需求响应 | 电价约束 | 清晰等价处理模糊机会优化约束 | [ | |||
需求响应供电方和用电方约束 | 基于机会约束的双层增量配电网优化配置模型 | [ | ||||
消费者负荷功率约束 | 两阶段优化模型(离散NLP+MINLP) | [ | ||||
电价上下界约束 | 清晰等价处理模糊机会优化约束 | [ | ||||
电价上下界约束 | MILP优化配置模型 | [ | ||||
激励型需求响应 | 负荷需求容量约束 | MILP优化配置模型 | [ | |||
可控负荷约束和可转移时间约束 | 直流微电网优化配置模型 | [ | ||||
可控负荷需求响应 | 负荷转移约束 | MILP双层优化配置模型 | [ | |||
负荷中断功率约束和平移负荷上限约束 | NLP冷热电供微电网优化配置模型 | [ | ||||
可中断负荷的中断容量约束、中断持续时间约束和调度间隔时间约束,可平移负荷的连续供电约束和调度次数约束 | 线性化可控负荷调动成本的绝对值问题和约束的最小值问题 | [ | ||||
可中断负荷的中断容量、中断次数和连续中断事件约束 | SOCP松弛微电网潮流方程 | [ | ||||
电动汽车最大充电功率约束 | 单层模型变为MILP双层优化模型 | [ |
求解 算法 | 优点 | 缺点 | 适用场景 | |||
解析类算法 | 普遍具有更高的计算效率 | 求解速度依赖于实际自治单元规模的大小,可能陷入局部最优解 | 小规模场景 | |||
智能类算法 | 能够求解黑箱模型 | 搜索性能和收敛速度的好坏主要取决于其控制参数的选择,而参数则依靠经验法进行制定 | 较大规模场景、训练模型较难 | |||
双层优化算法 | 可以简化模型并降低求解难度,模型的层次更加清晰 | 分层结构可能会带来非凸和层级之间不可连接的问题 | 较大规模场景,计算效率较高 |
Table 7 Comparisons of solving algorithms
求解 算法 | 优点 | 缺点 | 适用场景 | |||
解析类算法 | 普遍具有更高的计算效率 | 求解速度依赖于实际自治单元规模的大小,可能陷入局部最优解 | 小规模场景 | |||
智能类算法 | 能够求解黑箱模型 | 搜索性能和收敛速度的好坏主要取决于其控制参数的选择,而参数则依靠经验法进行制定 | 较大规模场景、训练模型较难 | |||
双层优化算法 | 可以简化模型并降低求解难度,模型的层次更加清晰 | 分层结构可能会带来非凸和层级之间不可连接的问题 | 较大规模场景,计算效率较高 |
1 | 国家能源局发布2022年可再生能源发展情况并介绍完善可再生能源绿色电力证书制度有关工作进展等情况[EB/OL]. (2023-02-14)[2023-04-20].http://www.gov.cn/xinwen/2023-02/14/content_5741481.htm. |
2 | 苏南, 董梓童. 新型电力系统规划设计面临诸多新挑战: 访国网经济技术研究院总工程师李晖[N]. 中国能源报, 2022-10-17(9). |
3 | 丁宇洁, 余万荣, 华龙, 等. 基于自治单元的配电网可靠性分析及优化配置[J]. 电力大数据, 2019, 22 (5): 68- 73. |
DING Yujie, YU Wanrong, HUA Long, et al. Reliability analysis and optimization configuration of distribution network based on autonomous control unit[J]. Power Systems and Big Data, 2019, 22 (5): 68- 73. | |
4 | 孙景博, 王阳, 杨晓帆, 等. 中国风光资源气候风险时空变化特征分析[J]. 中国电力, 2023, 56 (5): 1- 10. |
SUN Jingbo, WANG Yang, YANG Xiaofan, et al. Analysis of spatial and temporal variation character of climate risks of wind and solar resources in China[J]. Electric Power, 2023, 56 (5): 1- 10. | |
5 | BEERTEN J, BELMANS R. MatACDC - an open source software tool for steady-state analysis and operation of HVDC grids[C]//11th IET International Conference on AC and DC Power Transmission. Birmingham, UK. Institution of Engineering and Technology, 2015. |
6 |
WANG W Y, BARNES M. Power flow algorithms for multi-terminal VSC-HVDC with droop control[J]. IEEE Transactions on Power Systems, 2014, 29 (4): 1721- 1730.
DOI |
7 | 赵毅, 吴志, 钱仲豪, 等. 计及源—荷时空相关性的主动配电网分布式优化调度[J]. 电力系统自动化, 2019, 43 (19): 68- 76. |
ZHAO Yi, WU Zhi, QIAN Zhonghao, et al. Distributed optimal dispatch of active distribution network considering source-load temporal and spatial correlations[J]. Automation of Electric Power Systems, 2019, 43 (19): 68- 76. | |
8 | 张倩, 丁津津, 张道农, 等. 基于集群划分的高渗透率分布式系统无功优化[J]. 电力系统自动化, 2019, 43 (3): 130- 137. |
ZHANG Qian, DING Jinjin, ZHANG Daonong, et al. Reactive power optimization of high-penetration distributed generation system based on clusters partition[J]. Automation of Electric Power Systems, 2019, 43 (3): 130- 137. | |
9 | 王皓, 艾芊, 吴俊宏, 等. 基于交替方向乘子法的微电网群双层分布式调度方法[J]. 电网技术, 2018, 42 (6): 1718- 1727. |
WANG Hao, AI Qian, WU Junhong, et al. Bi-level distributed optimization for microgrid clusters based on alternating direction method of multipliers[J]. Power System Technology, 2018, 42 (6): 1718- 1727. | |
10 | 李元丽. 智能配电云边协同安全关键技术已在路上[N]. 人民政协报, 2023-04-04(5). |
11 |
LUO P, LIANG J F, FAN H, et al. Real-time distributed dispatch strategy for distribution transformer supply zone cluster based on cloud-edge collaboration architecture[J]. Frontiers in Energy Research, 2022, 10, 1019349.
DOI |
12 | ZHU X, YANG J, ZHAN X P, et al. Cloud-edge collaborative distributed optimal dispatching strategy for an electric-gas integrated energy system considering carbon emission reductions[J]. International Journal of Electrical Power & Energy Systems, 2022, 143, 108458. |
13 | 孙玲玲, 贾清泉, 张弓, 等. 考虑运营交易的微电网优化配置方法[J]. 中国电机工程学报, 2020, 40 (7): 2221- 2233, 2401. |
SUN Lingling, JIA Qingquan, ZHANG Gong, et al. Optimal configuration method of micro-grid considering operating and exchanging[J]. Proceedings of the CSEE, 2020, 40 (7): 2221- 2233, 2401. | |
14 | LIU Y X, GUO L, HOU R S, et al. A hybrid stochastic/robust-based multi-period investment planning model for island microgrid[J]. International Journal of Electrical Power & Energy Systems, 2021, 130, 106998. |
15 |
KHODAEI A, BAHRAMIRAD S, SHAHIDEHPOUR M. Microgrid planning under uncertainty[J]. IEEE Transactions on Power Systems, 2015, 30 (5): 2417- 2425.
DOI |
16 |
SHABAN BOLOUKAT M H, AKBARI FOROUD A. Stochastic-based resource expansion planning for a grid-connected microgrid using interval linear programming[J]. Energy, 2016, 113, 776- 787.
DOI |
17 | 张长久, 贾清泉, 赵铁军, 等. 考虑需求响应的增量配电网分布式电源优化配置[J]. 电力系统及其自动化学报, 2020, 32 (8): 7- 16. |
ZHANG Changjiu, JIA Qingquan, ZHAO Tiejun, et al. Optimal configuration of distributed generations in incremental distribution network considering demand-side response[J]. Proceedings of the CSU-EPSA, 2020, 32 (8): 7- 16. | |
18 |
GAO Y J, HU X B, YANG W H, et al. Multi-objective bilevel coordinated planning of distributed generation and distribution network frame based on multiscenario technique considering timing characteristics[J]. IEEE Transactions on Sustainable Energy, 2017, 8 (4): 1415- 1429.
DOI |
19 |
HUANG C, ZHANG H C, SONG Y H, et al. Demand response for industrial micro-grid considering photovoltaic power uncertainty and battery operational cost[J]. IEEE Transactions on Smart Grid, 2021, 12 (4): 3043- 3055.
DOI |
20 |
SALEHI BORUJENI M, AKBARI FOROUD A, DIDEBAN A. Accurate modeling of uncertainties based on their dynamics analysis in microgrid planning[J]. Solar Energy, 2017, 155, 419- 433.
DOI |
21 | 李鹏, 韩建沛, 殷云星, 等. 电转氢作为灵活性资源的微网容量多目标优化配置[J]. 电力系统自动化, 2019, 43 (17): 28- 35, 139. |
LI Peng, HAN Jianpei, YIN Yunxing, et al. Multi-objective optimal capacity configuration of microgrid with power to hydrogen as flexible resource[J]. Automation of Electric Power Systems, 2019, 43 (17): 28- 35, 139. | |
22 |
YIN M J, LI K, YU J. A data-driven approach for microgrid distributed generation planning under uncertainties[J]. Applied Energy, 2022, 309, 118429.
DOI |
23 | 赵波, 李得民, 吴在军, 等. 基于100%绿色能源供电目标的海岛微电网群容量优化配置[J]. 中国电机工程学报, 2021, 41 (3): 932- 946. |
ZHAO Bo, LI Demin, WU Zaijun, et al. Capacity optimal sizing of island microgrid clusters based on the target of 100% green energy power supply[J]. Proceedings of the CSEE, 2021, 41 (3): 932- 946. | |
24 | 赵波, 汪湘晋, 张雪松, 等. 考虑需求侧响应及不确定性的微电网双层优化配置方法[J]. 电工技术学报, 2018, 33 (14): 3284- 3295. |
ZHAO Bo, WANG Xiangjin, ZHANG Xuesong, et al. Two-layer method of microgrid optimal sizing considering demand-side response and uncertainties[J]. Transactions of China Electrotechnical Society, 2018, 33 (14): 3284- 3295. | |
25 | 孙可, 张全明, 王蕾, 等. 考虑安全裕度的微电网两阶段鲁棒规划[J]. 电网技术, 2020, 44 (12): 4617- 4626. |
SUN Ke, ZHANG Quanming, WANG Lei, et al. Two-stage robust planning for microgrid considering security margin[J]. Power System Technology, 2020, 44 (12): 4617- 4626. | |
26 |
XIE P, CAI Z X, LIU P, et al. Microgrid system energy storage capacity optimization considering multiple time scale uncertainty coupling[J]. IEEE Transactions on Smart Grid, 2019, 10 (5): 5234- 5245.
DOI |
27 |
EHSAN A, YANG Q. Scenario-based investment planning of isolated multi-energy microgrids considering electricity, heating and cooling demand[J]. Applied Energy, 2019, 235, 1277- 1288.
DOI |
28 |
LI J H, LAN F, WEI H. A scenario optimal reduction method for wind power time series[J]. IEEE Transactions on Power Systems, 2016, 31 (2): 1657- 1658.
DOI |
29 |
WEI J D, ZHANG Y, WANG J X, et al. Multi-period planning of multi-energy microgrid with multi-type uncertainties using chance constrained information gap decision method[J]. Applied Energy, 2020, 260, 114188.
DOI |
30 |
MOUTIS P, SKARVELIS-KAZAKOS S, BRUCOLI M. Decision tree aided planning and energy balancing of planned community microgrids[J]. Applied Energy, 2016, 161, 197- 205.
DOI |
31 |
GUO L, HOU R S, LIU Y X, et al. A novel typical day selection method for the robust planning of stand-alone wind-photovoltaic-diesel-battery microgrid[J]. Applied Energy, 2020, 263, 114606.
DOI |
32 |
PINTO R S, UNSIHUAY-VILA C, TABARRO F H. Coordinated operation and expansion planning for multiple microgrids and active distribution networks under uncertainties[J]. Applied Energy, 2021, 297, 117108.
DOI |
33 | 任洲洋, 颜伟, 项波, 等. 考虑光伏和负荷相关性的概率潮流计算[J]. 电工技术学报, 2015, 30 (24): 181- 187. |
REN Zhouyang, YAN Wei, XIANG Bo, et al. Probabilistic power flow analysis incorporating the correlations between PV power outputs and loads[J]. Transactions of China Electrotechnical Society, 2015, 30 (24): 181- 187. | |
34 | 李勇, 姚天宇, 乔学博, 等. 基于联合时序场景和源网荷协同的分布式光伏与储能优化配置[J]. 电工技术学报, 2022, 37 (13): 3289- 3303. |
LI Yong, YAO Tianyu, QIAO Xuebo, et al. Optimal configuration of distributed photovoltaic and energy storage system based on joint sequential scenario and source-network-load coordination[J]. Transactions of China Electrotechnical Society, 2022, 37 (13): 3289- 3303. | |
35 | 李姚旺, 苗世洪, 刘君瑶, 等. 考虑需求响应不确定性的光伏微电网储能系统优化配置[J]. 电力系统保护与控制, 2018, 46 (20): 69- 77. |
LI Yaowang, MIAO Shihong, LIU Junyao, et al. Optimal allocation of energy storage system in PV micro grid considering uncertainty of demand response[J]. Power System Protection and Control, 2018, 46 (20): 69- 77. | |
36 |
ZIA M F, ELBOUCHIKHI E, BENBOUZID M. Optimal operational planning of scalable DC microgrid with demand response, islanding, and battery degradation cost considerations[J]. Applied Energy, 2019, 237, 695- 707.
DOI |
37 |
ZHANG J, LI K J, WANG M Q, et al. A Bi-level program for the planning of an islanded microgrid including CAES[J]. IEEE Transactions on Industry Applications, 2016, 52 (4): 2768- 2777.
DOI |
38 | 李奇, 赵淑丹, 蒲雨辰, 等. 考虑电氢耦合的混合储能微电网容量配置优化[J]. 电工技术学报, 2021, 36 (3): 486- 495. |
LI Qi, ZHAO Shudan, PU Yuchen, et al. Capacity optimization of hybrid energy storage microgrid considering electricity-hydrogen coupling[J]. Transactions of China Electrotechnical Society, 2021, 36 (3): 486- 495. | |
39 | 郭玲娟, 魏斌, 韩肖清, 等. 基于集合经验模态分解的交直流混合微电网混合储能容量优化配置[J]. 高电压技术, 2020, 46 (2): 527- 537. |
GUO Lingjuan, WEI Bin, HAN Xiaoqing, et al. Capacity optimal configuration of hybrid energy storage in hybrid AC/DC micro-grid based on ensemble empirical mode decomposition[J]. High Voltage Engineering, 2020, 46 (2): 527- 537. | |
40 | 李彦哲, 郭小嘉, 董海鹰, 等. 风/光/储微电网混合储能系统容量优化配置[J]. 电力系统及其自动化学报, 2020, 32 (6): 123- 128. |
LI Yanzhe, GUO Xiaojia, DONG Haiying, et al. Optimal capacity configuration of wind/PV/storage hybrid energy storage system in microgrid[J]. Proceedings of the CSU-EPSA, 2020, 32 (6): 123- 128. | |
41 | 朱翰超, 马蕊. 考虑需求侧管理的冷热电联供微电网优化配置方法[J]. 电力系统保护与控制, 2019, 47 (2): 139- 146. |
ZHU Hanchao, MA Rui. Optimal configuration method of CCHP microgrid considering demand side management[J]. Power System Protection and Control, 2019, 47 (2): 139- 146. | |
42 |
WOUTERS C, FRAGA E S, JAMES A M. An energy integrated, multi-microgrid, MILP (mixed-integer linear programming) approach for residential distributed energy system planning - A South Australian case-study[J]. Energy, 2015, 85, 30- 44.
DOI |
43 |
KIPTOO M K, LOTFY M E, ADEWUYI O B, et al. Integrated approach for optimal techno-economic planning for high renewable energy-based isolated microgrid considering cost of energy storage and demand response strategies[J]. Energy Conversion and Management, 2020, 215, 112917.
DOI |
44 |
ZIDAN A, GABBAR H A, ELDESSOUKY A. Optimal planning of combined heat and power systems within microgrids[J]. Energy, 2015, 93, 235- 244.
DOI |
45 |
OBARA S, NAGANO K, OKADA M. Facilities introduction planning of a microgrid with CO2 heat pump heating for cold regions[J]. Energy, 2017, 135, 486- 499.
DOI |
46 |
ALUISIO B, DICORATO M, FORTE G, et al. Integration of heat production and thermal comfort models in microgrid operation planning[J]. Sustainable Energy, Grids and Networks, 2018, 16, 37- 54.
DOI |
47 | 唐静, 王琦, 周霞, 等. 考虑备用共享的互联电网备用容量分配方法[J]. 电力系统及其自动化学报, 2017, 29 (2): 32- 38. |
TANG Jing, WANG Qi, ZHOU Xia, et al. Method for reserve distribution of multi-area network considering reserve sharing[J]. Proceedings of the CSU-EPSA, 2017, 29 (2): 32- 38. | |
48 | TANG W J, SHIH S Y, YANG H T. Day-ahead optimal reserve capacity planning based on stochastic RE and DR models[C]//2018 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe). Sarajevo, Bosnia and Herzegovina. IEEE, 2018: 1–6. |
49 |
LEE S Y, JIN Y G, YOON Y T. Determining the optimal reserve capacity in a microgrid with islanded operation[J]. IEEE Transactions on Power Systems, 2016, 31 (2): 1369- 1376.
DOI |
50 | 陈厚合, 王杨, 张儒峰, 等. 考虑源荷协调的风电并网系统旋转备用容量优化[J]. 电力自动化设备, 2017, 37 (8): 185- 192. |
CHEN Houhe, WANG Yang, ZHANG Rufeng, et al. Spinning reserve capacity optimization considering coordination between source and load for power system with wind power[J]. Electric Power Automation Equipment, 2017, 37 (8): 185- 192. | |
51 | LIU Z H, LIU S L, LI Q H, et al. Optimal day-ahead scheduling of islanded microgrid considering risk-based reserve decision[J]. Journal of Modern Power Systems and Clean Energy, 2020, 9 (5): 1149- 1160. |
52 | 肖逸, 谢俊, 刘若平, 等. 计及风电功率预测误差的备用容量计算新方法[J]. 电力系统保护与控制, 2019, 47 (9): 72- 79. |
XIAO Yi, XIE Jun, LIU Ruoping, et al. A new calculation method of reserve capacity considering wind power forecasting error[J]. Power System Protection and Control, 2019, 47 (9): 72- 79. | |
53 | 李茜, 刘天琪, 何川, 等. 含风电系统的有功和备用协调优化方法[J]. 电力自动化设备, 2016, 36 (7): 7- 14. |
LI Qian, LIU Tianqi, HE Chuan, et al. Coordinated optimization of active power and reserve capacity for power grid with wind farm[J]. Electric Power Automation Equipment, 2016, 36 (7): 7- 14. | |
54 |
MEI S W, ZHANG D, WANG Y Y, et al. Robust optimization of static reserve planning with large-scale integration of wind power: a game theoretic approach[J]. IEEE Transactions on Sustainable Energy, 2014, 5 (2): 535- 545.
DOI |
55 | 陈哲, 王橹裕, 郭创新, 等. 计及风电备用容量与需求响应的多备用资源鲁棒优化[J]. 电力系统自动化, 2020, 44 (10): 50- 58. |
CHEN Zhe, WANG Luyu, GUO Chuangxin, et al. Robust optimization of multiple reserve resources considering reserve capacity of wind power and demand response[J]. Automation of Electric Power Systems, 2020, 44 (10): 50- 58. | |
56 | 刘振国, 胡亚平, 陈炯聪, 等. 基于双层优化的微电网系统规划设计方法[J]. 电力系统保护与控制, 2015, 43 (8): 124- 133. |
LIU Zhenguo, HU Yaping, CHEN Jiongcong, et al. A planning and design method for microgrid based on two-stage optimization[J]. Power System Protection and Control, 2015, 43 (8): 124- 133. | |
57 | 杨冬锋, 姜超, 蔡国伟, 等. 考虑电热耦合的交直流微电网多目标优化配置[J]. 电力系统自动化, 2020, 44 (8): 124- 132. |
YANG Dongfeng, JIANG Chao, CAI Guowei, et al. Multi-objective optimal configuration of AC/DC microgrid considering electricity/heat coupling[J]. Automation of Electric Power Systems, 2020, 44 (8): 124- 132. | |
58 |
丁明, 史盛亮, 潘浩, 等. 含电动汽车充电负荷的交直流混合微电网规划[J]. 电力系统自动化, 2018, 42 (1): 32- 38, 81.
DOI |
DING Ming, SHI Shengliang, PAN Hao, et al. Planning of AC/DC hybrid microgrid with integration of electric vehicles charging load[J]. Automation of Electric Power Systems, 2018, 42 (1): 32- 38, 81.
DOI |
|
59 |
HEMMATI R, SABOORI H, SIANO P. Coordinated short-term scheduling and long-term expansion planning in microgrids incorporating renewable energy resources and energy storage systems[J]. Energy, 2017, 134, 699- 708.
DOI |
60 |
YU N, KANG J S, CHANG C C, et al. Robust economic optimization and environmental policy analysis for microgrid planning: an application to Taichung Industrial Park, Taiwan[J]. Energy, 2016, 113, 671- 682.
DOI |
61 | 李咸善, 方婧, 郭诗书, 等. 基于灵敏度分析的并网型微电网容量优化配置[J]. 电力系统保护与控制, 2018, 46 (23): 8- 17. |
LI Xianshan, FANG Jing, GUO Shishu, et al. Capacity sizing optimal for grid-connected micro-grid based on sensitivity analysis[J]. Power System Protection and Control, 2018, 46 (23): 8- 17. | |
62 | 王树东, 杜巍, 林莉, 等. 基于合作博弈的需求侧响应下光储微电网优化配置[J]. 电力系统保护与控制, 2018, 46 (1): 129- 137. |
WANG Shudong, DU Wei, LIN Li, et al. Optimal allocation of photovoltaic energy storage microgrid under the demand side response based on cooperative game[J]. Power System Protection and Control, 2018, 46 (1): 129- 137. | |
63 |
NARAYAN A, PONNAMBALAM K. Risk-averse stochastic programming approach for microgrid planning under uncertainty[J]. Renewable Energy, 2017, 101, 399- 408.
DOI |
64 | MISHRA S, BORDIN C, TOMASGARD A, et al. A multi-agent system approach for optimal microgrid expansion planning under uncertainty[J]. International Journal of Electrical Power & Energy Systems, 2019, 109, 696- 709. |
65 |
PHAM A, JIN T D, NOVOA C, et al. A multi-site production and microgrid planning model for net-zero energy operations[J]. International Journal of Production Economics, 2019, 218, 260- 274.
DOI |
66 | 马国龙, 蔡泽祥, 刘平. 考虑电价激励需求响应下多主体微电网电源容量优化[J]. 电力自动化设备, 2019, 39 (5): 96- 102, 108. |
MA Guolong, CAI Zexiang, LIU Ping. Power capacity optimization of microgrid with multiple subjects considering price incentive demand response[J]. Electric Power Automation Equipment, 2019, 39 (5): 96- 102, 108. | |
67 | 黄弦超. 计及可控负荷的独立微网分布式电源容量优化[J]. 中国电机工程学报, 2018, 38 (7): 1962- 1970, 2211. |
HUANG Xianchao. Capacity optimization of distributed generation for stand-alone microgrid considering controllable load[J]. Proceedings of the CSEE, 2018, 38 (7): 1962- 1970, 2211. | |
68 | 陈璨, 吴文传, 张伯明, 等. 考虑光伏出力相关性的配电网概率潮流[J]. 电力系统自动化, 2015, 39 (9): 41- 47. |
CHEN Can, WU Wenchuan, ZHANG Boming, et al. Probabilistic load flow of distribution network considering correlated photovoltaic power output[J]. Automation of Electric Power Systems, 2015, 39 (9): 41- 47. | |
69 |
PRATHAPANENI D R, DETROJA K P. An integrated framework for optimal planning and operation schedule of microgrid under uncertainty[J]. Sustainable Energy, Grids and Networks, 2019, 19, 100232.
DOI |
70 | 董军, 聂麟鹏, 聂仕麟, 等. 考虑需求响应与风电不确定性的两阶段鲁棒旋转备用容量优化模型[J]. 电力建设, 2019, 40 (11): 55- 64. |
DONG Jun, NIE Linpeng, NIE Shilin, et al. Two-stage robust optimization model for spinning reserve capacity considering demand response and uncertainty of wind power[J]. Electric Power Construction, 2019, 40 (11): 55- 64. |
[1] | ZHAO Tong, LI Xuesong, ZHOU Hao, DING Yu, YANG Bin, WANG Wentao, WANG Peng. Electricity Carbon Coupled Market Modeling Method and Market Optimization Mechanism Based on Dynamic Carbon Emission Intensity [J]. Electric Power, 2025, 58(4): 31-43. |
[2] | Zhengnan GAO, Nan JIANG, Qixin CHEN, Jiang XU, Haili WANG, Li XIN, Qinggui XU. Construction Experience of German Electricity Market Adapting to Energy Transition [J]. Electric Power, 2024, 57(6): 204-214. |
[3] | Wenlong LI, Yun ZHOU, Ling LUO, Tiantian CHEN, Donghan FENG. Carbon Allocation Throughout the Entire Process of Electric Energy Trading Considering Spot Trading [J]. Electric Power, 2024, 57(5): 99-112. |
[4] | Hu TAN, Xiaoliang WANG, Tingting XU, Ke ZHAO, Lianchao SU, Wenyu ZHANG, Zheng XIN. Economic and Technological Optimization of Hybrid Rural Microgrid with Wind, PV, Biogas, Storage, AC, and DC [J]. Electric Power, 2024, 57(3): 27-33. |
[5] | Juanjuan GUO, Di SHEN, Pu TONG, Kun YAN, Xiaofan ZHANG, Fang HE. Economic Evaluation Method and Parameter Optimization for Third-Generation Nuclear Power in China [J]. Electric Power, 2024, 57(3): 206-212, 223. |
[6] | Zhiyuan GAO, Weijin ZHUANG, Jian GENG, Feng LI, Bike XUE, Xiaolei YANG, Keju BAI. The Regulation Mechanism of Electricity Market on Load Side Resources Based on the Economic Person Hypothesis [J]. Electric Power, 2024, 57(3): 213-223. |
[7] | Chaoying LI, Qinliang TAN. Market Trading Strategy for Thermal Power Enterprise in New Power System Based on Agent Modeling [J]. Electric Power, 2024, 57(2): 212-225. |
[8] | Zhongkai YI, Langbo HOU, Ying XU, Yongfeng WU, Zhimin LI, Junfei WU, Teng FENG, Liu HAN. Aggregation and Operation Key Technology of Virtual Power Plant with Flexible Resources in Electricity Market Environment: Review [J]. Electric Power, 2024, 57(12): 82-96. |
[9] | REN Jing, GAO Min, CHENG Song, ZHANG Xiaodong, LIU Youbo. A Balance Method for Power Supply-Demand Adapting to High Uncertainties of Renewable Energy in Northwest Power Grid [J]. Electric Power, 2023, 56(9): 66-78. |
[10] | XUE Guiyuan, WU Yin, ZHU Xiaojun, TAN Jian, MING Hao. Bi-level Optimization Method for Bidding Strategy of Power Suppliers Considering Energy-Consuming Right [J]. Electric Power, 2023, 56(5): 51-61. |
[11] | ZHAO Jianli, XIANG Jiani, TANG Zhuofan, QI Lei, AI Qian, WANG Di, YIN Shuangrui. Practice Exploration and Prospect Analysis of Virtual Power Plant in Shanghai [J]. Electric Power, 2023, 56(2): 1-13. |
[12] | Chuihui ZENG, Wenzheng LI, Baowei LI, Jun XIE. Optimal Energy Trading Strategies for Local Electricity Markets with Multiple Distributed Energy Resource Aggregators [J]. Electric Power, 2023, 56(11): 236-245. |
[13] | HUANG Shanshan, YE Ze, LUO Mai, CHEN Lei, WEI Wen, YAO Jun. Time-Sharing Trading Price Formation Mechanism and Model of China’s Mid to Long-Term Electricity Market [J]. Electric Power, 2023, 56(1): 17-27. |
[14] | HUANG Haitao, XU Jiadan, GUO Zhigang, JIN Jianbo. International Practice of Generation Capacity Adequacy Guarantee Mechanism and Its Implications for China’s Electricity Market [J]. Electric Power, 2023, 56(1): 68-76. |
[15] | YE Wensheng, JING Zhaoxia, XUAN Zongheng. UK Frequency Response Service Markets and Their Implications for China’s Frequency Regulation Market Construction [J]. Electric Power, 2023, 56(1): 77-86. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||